
	 	 	

	 Page	1	 		

	

	

	

	
ENhance	VIrtual	learning	Spaces	using	Applied	Gaming	in	

Education	
H2020-ICT-24-2016	

D2.1	
Analytics	infrastructure	installation	and	

data	aggregation	
	

Dissemination	level:	 Confidential	(CO)	
Contractual	date	of	delivery:	 Month	04,	January	31th,	2017	

Actual	date	of	delivery:	 Month	06,	March	31th,	2017	
Workpackage:	 WP2	-	User	data	aggregation,	shallow	game	analytics,	

and	visualizing	learning	
Task:	 T2.1	-	Tracking	infrastructure	for	user	data	collection	and	

aggregation	
Type:	 Other	

Approval	Status:		 final	
Version:	 4	

Number	of	pages:	 42	
Filename:	 D2.1_GIO_v4.docx	

Abstract	
The	ENVISAGE	project	aims	at	supporting	and	improving	virtual	labs	through	a	structured	and	data-
driven	process.	The	document	at	hand	gives	a	detailed	description	of	the	tracking	infrastructure	built	
for	 and	 used	 in	 the	 ENVISAGE	 project	 to	 collect	 the	 necessary	 data.	 Based	 on	 the	 pedagogical	
requirements	 that	 were	 defined	 in	 one	 of	 the	 previous	 deliverables,	 i.e.,	 D1.1,	 the	 tracking	
infrastructure	will	gather	and	pre-process	all	necessary	data.	This	data	is	then	used	to	visualize	user	
behavior	and	also	serves	as	 input	 for	deep	analytics.	Such	an	 infrastructure	can	be	at	 least	divided	
into	four	different	layers.	The	first	 layer	tracks	raw	user	events	being	sent	from	a	virtual	 lab	to	GIO	
servers.	Typically,	a	virtual	 lab	 is	a	website	or	mobile	app,	and	GIO	provides	the	necessary	piece	of	

	 	 	

	 Page	2	 		

software	 to	 be	 integrated	 into	 the	 virtual	 lab	 for	 tracking.	 The	 format	 of	 the	 raw	 data	 is	 typically	
neither	sufficient	to	allow	direct	visualization	nor	is	it	proper	input	for	more	sophisticated	algorithms.	
Therefore,	 there	 exists	 a	 second	 layer	 that	 transforms	 and	 aggregates	 the	 raw	 data	 into	 a	 more	
manageable	format.	During	this	process	the	data	is	also	enriched	with	additional	(meta)data,	such	as	
geo-information,	and	raw	events	are	grouped	into	user	sessions.	In	an	advanced	setting,	we	have	a	
third	layer	where	user	data	can	also	be	augmented	with	predictions	about	future	users’	behavior	or	
automatically	 inferred	 traits.	 After	 this	 step,	 the	 data	 needs	 to	 be	 made	 accessible	 again.	 To	
accomplish	this	 in	a	flexible	way,	the	fourth	layer	consists	of	an	API	that	makes	all	data	available	in	
different	forms	and	formats.	While	raw	data	access	 is	allowed,	the	data	can	also	be	accessed	 in	an	
aggregated	form	or	on	a	user	level	with	all	its	metadata.	

The	 information	 in	 this	document	reflects	only	 the	author’s	views	and	the	European	Community	 is	not	 liable	 for	any	use	
that	 may	 be	 made	 of	 the	 information	 contained	 therein.	 The	 information	 in	 this	 document	 is	 provided	 as	 is	 and	 no	
guarantee	or	warranty	is	given	that	the	information	is	fit	for	any	particular	purpose.	The	user	thereof	uses	the	information	
at	its	sole	risk	and	liability.	

				

	

	

	

	
co-funded	by	the	European	Union	 	

	 	 	

	 Page	3	 		

Copyright	
	

©	Copyright	2017	ENVISAGE	Consortium	consisting	of:	

	

This	document	may	not	be	copied,	 reproduced,	or	modified	 in	whole	or	 in	part	 for	any	purpose	
without	written	permission	from	the	ENVISAGE	Consortium.	In	addition	to	such	written	permission	
to	copy,	reproduce,	or	modify	this	document	in	whole	or	part,	an	acknowledgement	of	the	authors	
of	the	document	and	all	applicable	portions	of	the	copyright	notice	must	be	clearly	referenced.	

	

All	rights	reserved.	

	

	

 D2.1,	V4.0

	

Page	4	

History	

Version	 Date	 Reason	 Revised	by	
1	(alpha)	 8.2.2017	

	
Initial	version	of	the	Table	of	Contents	
	

Fabian	Hadiji,	Marc	
Müller,	Spiros	
Nikolopoulos	

2	(beta)	 17.3.2017	 Beta	version	incorporating	most	of	the	
envisioned	content	

Giannis	Chantas,	
Fabian	Hadiji,	
Christoffer	
Holmgård,	Marc	
Müller	

3	(final)	 27.3.2017	 Final	version	with	content	fixed	and	last	
request	for	last	comments	

Giannis	Chantas	,	
Fabian	Hadiji,	Marc	
Müller	

4	(final)	 31.3.2017	 Fixed	typos	and	improved	language.	
Extended	list	of	abbreviations.	Minor	edits.	

Fabian	Hadiji,	Marc	
Müller	

	

Author	list	

Organization	 Name	 Contact	Information	
GIO	 Fabian	Hadiji	 fabian@goedle.io	

GIO	 Marc	Müller	 marc@goedle.io	

	

	

 D2.1,	V4.0

	

Page	5	

Executive Summary
The	 ENVISAGE	project	 aims	 at	 supporting	 and	 improving	 virtual	 labs	 through	 a	 structured	
and	data-driven	process.	The	document	at	hand	gives	a	detailed	description	of	the	tracking	
infrastructure	build	for	and	used	 in	the	ENVISAGE	project	to	collect	all	necessary	data.	We	
begin	by	reviewing	the	pedagogical	requirements	that	were	already	defined	in	the	previous	
deliverable	D1.1.	We	then	discuss	how	these	requirements	can	be	satisfied	from	a	technical	
perspective.	We	then	describe	how	the	tracking	infrastructure	gathers	and	preprocesses	the	
necessary	 data	 so	 that	 user	 behavior	 can	 be	 visualized.	 At	 the	 same	 time,	 the	 data	 also	
needs	to	be	converted	so	that	it	can	be	used	for	deep	analytics.	Such	an	infrastructure	can	
be	divided	at	least	into	four	different	layers	and	we	describe	each	layer	in	detail.		

The	first	layer	persistently	tracks	raw	user	events	which	are	being	sent	from	a	virtual	lab	to	
GIO	servers.	For	this	purpose,	multiple	servers	run	in	parallel	to	ensure	availability	and	zero	
downtime	deployments.	Typically,	a	virtual	lab	is	a	website	or	mobile	app,	and	GIO	provides	
the	necessary	software	to	be	integrated	into	such	a	virtual	lab	for	tracking.	We	will	exemplify	
this	process	based	on	the	“Wind	Energy	Lab”	which	is	currently	in	use	for	the	first	ENVISAGE	
feasibility	case	study.	

The	format	of	the	raw	data	is	typically	neither	sufficient	to	allow	direct	visualization,	nor	is	it	
proper	 input	for	more	sophisticated	algorithms.	Therefore,	there	exists	a	second	layer	that	
transforms	 and	 aggregates	 the	 raw	 data	 into	 a	more	manageable	 format.	 As	 the	 current	
infrastructure	 does	 not	 support	 real-time	 tracking,	 all	 events	 from	 the	 different	 tracking	
instances	 need	 to	 be	merged	 regularly.	 Secondly,	 the	 aggregated	 data	 is	 imported	 into	 a	
database.	During	this	process	the	data	 is	also	enriched	with	additional	 (meta)data,	such	as	
geo-information,	and	raw	events	are	grouped	into	user	sessions.		

In	an	advanced	setting,	we	have	a	third	layer	where	user	data	is	augmented	with	predictions	
about	future	users’	behavior.	In	such	settings,	the	imported	data	is	used	to	construct	feature	
vectors	that	serve	as	input	to	(machine	learning)	algorithms.	In	supervised	settings,	historic	
feature	vectors	are	used	to	train	a	model.	Such	models	are	then	used	to	make	predictions	
for	the	current	users.	All	output	from	the	algorithms	and	their	predictions	are	stored	in	the	
database	as	well,	 to	ensure	 fast	and	easy	access.	 In	unsupervised	 settings,	patterns	 in	 the	
data	 are	 discovered	 and	 the	 data	 is	 enriched	 with	 indicators	 of	 these	 patterns,	 e.g.,	
individuals’	memberships	in	various	groups.	

In	a	 last	step,	 the	data	needs	to	be	made	accessible	again.	To	accomplish	 this	 in	a	 flexible	
way,	the	fourth	layer	consists	of	an	Application	Programming	Interface	(API)	that	makes	all	
data	available	 in	different	 formats.	Besides	allowing	 raw	data	access,	 the	data	can	also	be	
accessed	 on	 a	 user	 level	 with	 all	 its	 corresponding	 metadata.	 To	 close	 the	 entire	 loop	
including	all	components	of	the	ENVISAGE	project,	the	data	needs	to	be	made	available	to	
the	 virtual	 labs	 and	 the	 authoring	 tool	 (details	 on	 the	 virtual	 labs	were	 given	 in	D1.1	 and	
details	on	the	authoring	tool	will	be	given	in	deliverable	D4.1).	We	will	also	describe	in	detail	
how	the	existing	infrastructure	has	been	extended	to	the	needs	of	the	ENVISAGE	project	and	
lastly,	we	give	 some	 initial	 statistics	on	already	 tracked	user	data.	These	statistics	are	also	
based	on	the	“Wind	Energy	Lab”.	

 D2.1,	V4.0

	

Page	6	

Abbreviations and Acronyms
API	 Application	Programming	Interface	

AWS	 Amazon	Web	Service	

CDN	 Content	Delivery	Network	

CPU	 Central	Processing	Unit	

EBS	 Elastic	Block	Store	

EC2	 Elastic	Compute	Cloud	

ELB	 Elastic	Load	Balancer	

FTP	 File	Transfer	Protocol	

GA	 Google	Analytics	

GTM	 Google	Tag	Manager	

HTTP	 Hypertext	Transfer	Protocol	

I/O	 Input/Output	

JSON	 JavaScript	Object	Notation	

KMS	 Key	Management	System	

NoSQL	 Not	only	SQL	

RAM	 Random	Access	Memory	

RDS	 Relational	Database	Service	

S3		 Simple	Storage	Service	

SHA-1	 Secure	Hash	Algorithm	1	

SLA	 Service	Level	Agreements	

SQL	 Structured	Query	Language	

SSL	 Secure	Sockets	Layer	

TLS	 Transport	Layer	Security	

	

	

 D2.1,	V4.0

	

Page	7	

Table	of	Contents	

1	 INTRODUCTION	..	9	

1.1	 The	ENVISAGE	Goals	..	9	

1.2	 The	ENVISAGE	Requirements	...	9	

1.3	 Scope	of	the	Document	...	13	

2	 ANALYTICS	STATE	OF	THE	ART	..	14	

2.1	 Advanced	Analytics	...	15	

2.2	 Learning	Analytics	...	16	

3	 INFRASTRUCTURE	...	17	

4	 DATA	TRACKING	...	19	

4.1	 Concept	of	Event-based	Tracking	...	19	

4.2	 System	Architecture	for	Tracking	...	21	
4.2.1	 Scalability	..	21	
4.2.2	 Reliability	and	Availability	..	22	
4.2.3	 Data	Protection	..	23	

4.3	 Available	Integrations	..	23	
4.3.1	 Google	Tag	Manager	..	23	
4.3.2	 HTTP-API	...	24	

4.4	 Historical	Data	Import	...	25	

4.5	 On-Boarding	Process	...	26	

4.6	 Example	Integration:	Wind	Energy	Lab	..	27	

5	 DATA	AGGREGATION	...	30	

5.1	 Transformation	of	Raw	Data	..	30	

5.2	 Enriching	with	external	data	..	30	

5.3	 Aggregation	and	Categorization	of	User	Data	..	31	
5.3.1	 Calculate	sessions	...	31	

6	 DATA	AUGMENTATION	..	32	

 D2.1,	V4.0

	

Page	8	

7	 DATA	ACCESS	...	34	

7.1	 Raw	Data	Access	..	34	

7.2	 Aggregated	Data	Access	..	35	

7.3	 User	Level	Access	..	35	

8	 EXTENDING	THE	EXISTING	INFRASTRUCTURE	FOR	ENVISAGE	36	

9	 STATISTICS	ON	TRACKED	DATA	...	39	
	

		

List	of	Figures	
Figure	 3.1	 The	 diagram	 gives	 an	 overview	 how	 the	 GIO	 infrastructure	 is	 built	 and	 how	 it	
interacts	with	the	other	components	of	the	ENVISAGE	project.	The	different	parts	of	the	GIO	
infrastructure	such	as	data	tracking,	data	aggregation,	data	augmentation,	and	data	access	
are	described	in	the	following	sections.	 17	

Figure	4.1	Tracking	proposal	for	changing	the	speed	of	the	simulation.	 27	

Figure	9.1	Overall	sessions	for	the	tracked	Wind	Energy	Lab	users	 39	

Figure	9.2	Transition	graph	 41	

	

List	of	Tables	
Table	4.1	Possible	historical	import	scenarios	 26	

Table	4.2	Wind	Energy	Lab	event	definition	 28	

Table	9.1	Days	with	high	usage	 39	

Table	9.2	Event	occurrences	 40	

Table	9.3	Geo	locations	of	tracked	events	 41	

	

 D2.1,	V4.0

	

Page	9	

1 Introduction	

1.1	 The	ENVISAGE	Goals	
The	overall	goal	of	the	ENVISAGE	project	is	to	improve	virtual	labs	through	a	structured	and	
data-driven	process.	This	requires	data	from	the	users,	i.e.,	the	students,	of	different	virtual	
labs,	and	an	authoring	tool	that	is	capable	of	adapting	existing	virtual	labs	based	on	the	data	
analysis.	 Initially,	 existing	 labs	 are	 extended	 in	 such	 a	 way	 that	 they	 integrate	 tracking	
software	to	allow	gathering	of	behavioral	user	data.	The	software	to	extend	a	lab	is	typically	
provided	by	third-party	services	and	in	the	case	of	the	ENVISAGE	project,	GIO	develops	and	
provides	 this	 software.	 This	 software	 needs	 to	 be	 integrated	 into	 the	 source	 code	 of	 the	
virtual	lab	by	its	developer	or	maintainer.	The	collected	data	is	typically	in	the	form	of	events	
with	additional	metadata	attached	 to	 it	 (see	Section	4.1	 	 for	more	details).	 Tracking	 these	
events	 on	 a	 very	 fine	 level	 does	 not	 only	 allow	 shallow	 analytics	 but	 also	 provides	 the	
foundation	for	a	more	advanced	analysis	using	machine	learning,	i.e.,	deep	analytics.	Using	
this	 data,	 one	 tries	 to	 understand	 the	 student’s	 behavior	 and	 to	 adapt	 the	 structure	 or	
content	of	the	virtual	lab	in	order	to	support	the	learning	process.	

Shallow	analytics	 provides	 the	 first	 insights	 into	 the	behavior	of	 students	 solving	different	
tasks.	However,	as	the	name	indicates,	it	mainly	monitors	their	activity	and	this	is	often	done	
on	 an	 aggregated	 level	 without	 looking	 at	 individual	 users	 or	 particular	 segments	 of	
students.	Examples	of	such	shallow	analytics	are	the	number	of	active	users	on	a	given	day	
or	 the	average	duration	of	 a	 session.	Here,	 the	 focus	 is	 to	provide	 information	on	 the	 lab	
level	 and	 to	 aggregate	 information	 across	 all	 users.	 However,	 in	 order	 to	 gain	 actionable	
insights	 or	 to	 even	 adapt	 the	 content	 dynamically,	 more	 sophisticated	 approaches	 are	
necessary.	Additionally,	the	focus	should	shift	to	the	individual	user	or	prominent	groups	of	
users	 to	 provide	 a	 more	 personalized	 experience.	 Such	 personalized	 education	 has	 been	
identified	by	different	stakeholders	as	an	area	that	can	revolutionize	the	state	of	education.		

The	ENVISAGE	project	 aims	at	utilizing	machine	 learning	 technologies	 to	describe	decision	
making,	to	segment	users	automatically,	or	to	predict	their	future	behavior	or	performance.	
Often,	the	algorithms	in	use	cannot	directly	work	on	the	events	but	instead	need	a	numerical	
or	 categorical	 representation	 of	 the	 information.	 An	 event	 as	 such	 is	 just	 a	 message	 or	
dictionary	of	semi-structured	information	as	described	below.	Machine	learning	algorithms,	
however,	 tend	 to	 work	 on	 data	 structures	 such	 as	 vectors	 for	 one	 user	 or	 matrices	 for	
several	 users.	 Therefore,	 all	 events	 of	 a	 single	 user	must	 be	 transformed	 in	 some	 kind	 of	
vector	representation.	When	setting	up	the	tracking,	one	should	make	sure	that	the	tracking	
within	 the	 virtual	 lab	 collects	 all	 necessary	 data	 from	 the	 students	 and	 their	 actions.	 This	
data	is	then	transformed	and	features	are	constructed	from	the	raw	event	stream.	

1.2	 The	ENVISAGE	Requirements	
We	can	differentiate	the	requirements	of	the	various	parts	of	the	project	in	different	groups.	
On	 the	 one	 hand,	 there	 are	 general	 requirements	 that	 need	 to	 be	 satisfied	 to	 solve	 the	
problem	 on	 a	 high	 level	 and	 to	 support	 the	 greater	 vision.	 Then	 we	 have	 specific	
requirements	 that	 result	 from	particular	 problem	definitions	 or	metrics	 that	 place	 certain	
constraints	on	the	tracked	events	in	order	to	solve	subproblems.	

 D2.1,	V4.0

	

Page	10	

General	 requirements	neither	 take	 technical	 restrictions	 into	account,	nor	discuss	 in	detail	
the	pedagogical	point	of	view.	Instead	they	summarize	on	a	high	level	how	an	infrastructure	
must	 look	 like,	 in	 order	 to	 deliver	 value	 to	 the	 project.	 On	 the	 other	 hand,	 we	 have	
developed	 during	 the	 course	 of	 the	 first	 months	 a	 set	 of	 requirements	 that	 stem	 from	
teachers	 and	 people	 involved	 in	 learning	 analytics.	 These	 requirements	 specify	 certain	
information	 in	detail	and	describe	different	 scenarios	with	 schools,	 teachers,	and	students	
involved.	For	example,	we	need	to	understand	the	sequence	of	steps	a	student	is	taking	to	
understand	 their	 behavior	 and	 this	 information	 needs	 to	 be	 grouped	 based	 on	 teachers,	
schools,	or	regions.	Let	us	now	start	with	the	general	requirements	first.	

General	requirements	

The	 general	 requirements	 describe	 on	 a	 high	 level	 the	 different	 needs	 so	 that	 the	 entire	
vision	of	the	project	can	be	realized:	

• Provide	data	 for	 shallow	analytics:	Often	 simple	 counts	provide	a	 first	 insight	 into	
the	data.	While	some	of	this	information	can	be	accessed	via	existing	analytics	tools	
(see	 Section	 2),	 learning	 analytics	 also	 imposes	 specific	 requirements	 that	 are	
typically	not	satisfied	by	existing	tools.	Here,	a	common	example	is	the	time	to	solve	
a	(sub)task	and	we	touch	upon	other	examples	further	below	(see	Section	8	as	well).	

• Aggregate,	enrich,	and	augment	data:	As	described	in	the	next	bullet,	deep	analytics	
and	 machine	 learning	 require	 data	 in	 a	 flexible	 form.	 All	 kinds	 of	 features	 are	
generated	 based	 on	 the	 raw	 events	 and	 this	 processing	 requires	 a	 lot	 of	 creative	
thinking.	 To	 support	 this	 process,	 the	 raw	 data	 is	 aggregated	 and	 grouped	 as	
necessary.	 Additionally,	 the	 data	 can	 be	 enriched	with	 third-party	 information.	 For	
example,	 geo-information,	weather	 information,	or	other	demographic	 information	
that	 is	 available	 while	 respecting	 privacy	 restrictions.	 When	 this	 data	 is	 used	 in	
algorithms	 to	 predict	 future	 user	 behavior,	 the	 results	 can	 be	 used	 to	 further	
augment	the	existing	data.	

• Provide	data	for	deep	analytics:	Once	we	move	beyond	shallow	analytics,	the	setting	
advances	and	gets	more	challenging.	Here,	 the	existing	analytics	platforms	typically	
do	not	satisfy	the	requirements	at	all.	Either,	the	data	is	aggregated	too	much	or	data	
is	only	provided	in	its	raw	form.	Here,	the	ENVISAGE	project	is	providing	data	to	the	
deep	 analytics	 interface	 in	 such	 a	 form	 that	 it	 can	 easily	 be	 used	 in	 advanced	
algorithms.	The	 input	 to	deep	analytics	 is	manifold.	 It	does	not	only	 take	data	 into	
account	that	is	generated	akin	to	the	shallow	analytics	but	also	requires	entirely	new	
input.	 For	 example,	 to	 model	 a	 student’s	 decision	 making,	 a	 state	 model	 of	 the	
student	should	be	captured	continuously	throughout	the	entire	usage	of	the	virtual	
lab.	This	often	tracks	various	boolean	features	which	indicate	behavior	or	traits	on	a	
very	 fine	 level.	 E.g.,	 has	 clicked	 button	 of	 type	 A	 or	 has	 changed	 the	 setting	 of	
parameter	B.	Now,	depending	on	 the	algorithm,	various	 interactions	between	such	
models	will	 go	 into	 the	machine	 learning	model	 as	well.	 If	we	 stay	 in	 the	 boolean	

 D2.1,	V4.0

	

Page	11	

case,	 we	 could	 add	 pairwise	 interactions	 such	 as	 XOR1	 operations	 between	 two	
simple	features.	This	creates	additional,	more	complex,	features	that	the	algorithm	is	
not	 able	 to	 construct	 itself.	 On	 top	 of	 that,	 interaction	 between	 different,	 non-
boolean,	datapoints	can	be	added	as	well.	For	example,	the	sum	or	the	quotient	of	
two	 simple	 numerical	 features.	 In	 summary,	 deep	 analytics	 is	 typically	 user-centric	
and	very	detailed,	while	shallow	analytics	is	lab-centric	and	makes	use	of	higher	level	
statistics.	

• Making	 data	 available	 again:	 Once	 all	 data	 has	 been	 collected,	 transformed,	
enriched,	and	augmented,	the	data	needs	to	be	made	available	again	to	the	virtual	
lab	or	its	authoring	tool.	Otherwise,	the	data	is	 locked	inside	a	data	warehouse	and	
the	project	faces	the	same	limitations	as	if	a	standard	analytics	tool	was	used.	

Specific	requirements	

We	will	now	try	to	make	these	general	requirements	more	tangible	and	give	a	few	examples	
what	 data	 should	 look	 like	 for	 specific	 learning	 analytics	 use	 cases.	 The	 following	metrics	
were	originally	introduced	in	deliverable	D1.2.	While	D1.2	identified	the	requirements	from	
the	perspective	of	a	teacher,	we	are	now	going	to	describe	the	technical	requirements	that	
result	from	these	metrics.	In	the	deliverable	at	hand,	we	will	also	sketch	how	we	will	solve	
and	implement	these	metrics.	This	includes	a	discussion	of	technical	requirements	that	must	
be	 put	 in	 place.	 The	 metrics	 presented	 in	 D1.2	 give	 rise	 to	 a	 more	 concrete	 set	 of	
requirements.	 We	 will	 here	 review	 those	 metrics	 again	 and	 explain	 how	 they	 can	 be	
implemented	based	on	GIO’s	tracking	infrastructure.	

• Time-on-task:	 This	 measures	 the	 time	 spent	 to	 solve	 a	 (sub)task.	 Looking	 at	 our	
setting	 and	 the	 event-based	 tracking,	 this	 is	 measured	 as	 the	 time	 between	 two	
specific	 events.	 This	 requires	 that	 the	 beginning	 and	 the	 end	 of	 a	 task	 is	 clearly	
identified	by	a	named	event.	

• Time-to-completion:	 Similar	 to	 the	 previous	 metric,	 we	 need	 to	 measure	 a	
“completion”	event.	This	event	should	clearly	mark	if	the	goal	of	an	activity	has	been	
reached.	In	contrast	to	the	previous	metric,	the	overall	time	spent	from	start	to	finish	
of	the	entire	activity	is	measured.	

• Class	categorization	profile:	A	group	of	students,	e.g.,	a	class,	can	be	classified	 into	
different	categories.	 In	order	 to	perform	such	a	categorization,	 the	performance	of	
each	 student	must	 be	 determined.	 Here,	we	 can	 either	 use	 a	 proxy,	 e.g.,	 time-to-
completion,	or	 an	alternative	 score	needs	 to	be	 tracked	additionally.	 This	 grouping	
does	 not	 necessarily	 have	 to	 be	 on	 the	 class	 level	 but	 can	 also	 be	 a	more	 flexible	
grouping.	 Therefore,	 the	 tracking	 also	 needs	 to	 support	 a	 general	 grouping	 or	
clustering	of	students	based	on	the	tracked	data.	

• Perceived,	expected	and	actual	general	class	or	group	profiles:	This	metric	requires	
more	 than	 the	 standard	 tracking	 of	 events.	 In	 particular,	 it	 requires	 specific	 input	
from	 the	 users	 of	 the	 lab,	 e.g.,	 input	 from	 students	 asking	 about	 their	 own	

																																																								
1 exclusive or

 D2.1,	V4.0

	

Page	12	

perception.	This	can	be	extended	by	also	obtaining	corresponding	data	from	teachers	
and	classmates.	

• Levels	 of	 proficiency:	 Here,	 it	 is	 envisioned	 that	 teachers	 can	 compare	 the	
performance	 of	 their	 own	 classes	 with	 other	 classes	 and	 country	 averages.	
Additionally,	teachers	should	be	given	the	option	to	add	a	level	to	each	task.	As	the	
tracking	 is	 user	 focused	 and	 does	 not	 model	 the	 learning	 tasks	 themselves,	 the	
analytics	dashboard	should	query	a	teacher	for	the	input	of	task	levels.	As	mentioned	
above,	 a	 comparison	on	a	 class	 level	or	 similar	 grouping	 requires	 the	virtual	 lab	 to	
transmit	the	group	information.	

• Mastery	 index:	 This	 metric	 compares	 a	 particular	 student’s	 performance	 with	 the	
average,	 minimum,	 or	 maximum	 of	 a	 class	 or	 different	 group	 of	 students.	 I.e.,	 it	
essentially	grades	a	student	based	on	a	specific	normalization.	When	the	tracking	of	
groups	of	students	 is	 in	place,	this	 is	more	an	analytical	challenge	 in	the	dashboard	
than	a	tracking	issue,	and	it	needs	to	respect	the	student’s	privacy.		

• Travel-path	related	metrics:	This	requires	a	precise	sequence	of	events	which	have	
been	 taken	 by	 the	 students.	 Fortunately,	 this	 is	 naturally	 supported	 by	 an	 event-
based	 tracking.	 Nevertheless,	 generating	 value	 from	 this	 data	 is	 still	 a	 major	
challenge	 and	 does	 not	 only	 require	 capable	 algorithms,	 but	 also	 a	 proper	
visualization.	

Although	 most	 of	 the	 metrics	 above	 can	 be	 realized,	 there	 are	 some	 restrictions	 and	
limitations	 that	 should	 be	 pointed	 out	 at	 this	 point.	 It	 should	 be	 kept	 in	 mind	 that	 the	
designed	 system	 should	 be	 generally	 applicable	 beyond	 specific	 virtual	 labs	 or	 schools.	
Otherwise,	it	is	difficult	to	build	a	product	as	a	(self-)service	and	instead	each	new	lab	would	
require	 a	 large	 amount	 of	 customization	 and	 the	 platform	 develops	 more	 towards	 a	
consulting	service	or	agency	business.	Clearly,	some	of	the	requirements	above	will	always	
require	input	from	teachers	or	virtual	lab	designers,	and	this	is	generally	not	avoidable.	For	
example,	the	concepts	like	proficiency	and	mastery	index	need	a	custom	definition	for	each	
lab.	Unfortunately,	it	is	not	straightforward	to	envision	a	product	or	system	that	models	such	
a	scoring	automatically	for	every	task	and	setting.	However,	with	our	current	approach	we	
are	aiming	at	a	solution	that	requests	the	definitions	from	a	teacher	and	we	aim	at	providing	
a	design	and	interface	so	that	this	can	be	done	in	a	highly	automated	fashion.	For	example,	
we	 can	 think	 of	 a	 simple	 interface	 that	 asks	 for	 specific	 occurrences	 of	 events	 and	 some	
parameter	values.	These	can	then	be	used	to	implement	a	scoring	function	for	a	virtual	lab.	
Besides	this	issue,	here	a	some	other	limitations	that	need	to	be	kept	in	mind:	

• The	metrics	 above	 induce	a	 certain	 structure	of	 the	 virtual	 lab	users.	 For	 example,	
each	class	 is	composed	of	students	or	a	group	of	students.	Additionally,	 there	exist	
teachers	who	are	not	 lab	users	but	may	also	provide	additional	data.	This	structure	
requires	a	group-call	functionality,	so	that	users	can	be	grouped	into	these	different	
(sub-)groups.	As	opposed	 to	 an	event	which	 typically	 tracks	 an	 action,	 a	 group-call	
adds	metadata	to	a	user	in	form	of	a	cluster	affiliation.	However,	it	is	not	possible	to	
build	 a	 model	 for	 each	 school	 in	 every	 city	 and	 country	 with	 all	 of	 its	 specifics.	

 D2.1,	V4.0

	

Page	13	

Therefore,	 we	 will	 potentially	 have	 to	 find	 some	 workarounds	 for	 school	 specific	
issues,	in	order	to	guarantee	a	general	system	that	is	applicable	on	a	large	scale.	

• As	mentioned	in	the	previous	bullet,	a	teacher	may	add	information	on	students.	This	
can	 be,	 for	 example,	 a	 record	 of	 progress	 for	 each	 student.	 This	 is	 generally	 not	 a	
problem,	however,	the	information	will	have	to	be	transmitted	in	a	general	form.	It	
will	not	be	possible	to	build	a	database	system	for	each	school	for	their	own	record	
keeping.	Additionally,	the	virtual	labs	will	have	to	be	implemented	in	such	a	form	that	
they	 request	 a	 user	 authentication.	Otherwise,	 records	 cannot	 be	 aligned	with	 the	
tracked	 data	 during	 the	 usage	 of	 the	 lab.	 This	 is	 particularly	 challenging	 in	 school	
settings	where	computer	pools	are	used,	i.e.,	many	students	use	the	same	machine.	

• Although	many	interesting	scenarios	could	make	use	of	a	real-time	analytics	system,	
e.g.,	teacher	observing	the	student’s	progress	during	a	class,	this	will	most	likely	not	
be	manageable	 in	 the	 timeframe	of	 the	 project	with	 the	 limited	 resources.	 A	 real-
time	system	is	more	complex	in	various	aspects	and	its	maintenance	requires	many	
resources.	 Instead,	 the	 tracking	 will	 be	 in	 real-time	 but	 its	 aggregation	 and	
augmentation	will	 be	 done	 in	 a	 batchwise	 fashion.	 This	 can	 result	 in	 lags	 of	 a	 few	
hours	when	data	is	accessed.	

1.3	 Scope	of	the	Document	
We	start	by	summarizing	 the	state	of	 the	art	on	analytics,	 including	 learning	analytics.	We	
then	 describe	 the	 entire	GIO	 infrastructure	 in	 detail.	 This	 includes	 the	 different	 layers	 for	
data	tracking,	data	aggregation,	data	augmentation,	and	data	access.	Before	giving	concrete	
examples	 of	 already	 tracked	 data,	 we	 also	 describe	 how	 we	 extended	 the	 existing	 GIO	
infrastructure	to	meet	the	requirements	of	the	ENVISAGE	project.	

	

 D2.1,	V4.0

	

Page	14	

2 Analytics	State	of	the	Art		

The	 current	 analytics	 landscape	 can	 initially	 be	 quite	 confusing.	 Typically,	 every	 platform	
puts	 barriers	 in	 place	 when	 it	 comes	 to	 accessing	 the	 raw	 data	 in	 order	 to	 maintain	 a	
competitive	advantage.	Nowadays,	 it	 is	expected	 that	 the	data,	which	 is	 generated	by	 the	
usage	of	website	or	apps,	has	a	certain	value	if	presented	in	a	meaningful	way.	To	monetize	
the	data,	 it	 is	necessary	 to	have	 information	which	nobody	else	owns.	Such	a	 competitive	
advantage	can	be	reached	through	data	presentation,	aggregation	or	evaluation.	This	applies	
in	particular	for	the	processing	of	raw	data	and	then	enriching	it	with	other	data	sources	or	
computations.	Analytics	provides	a	service	to	analysts,	product	owners	and	marketing	teams	
at	 the	 same	 time.	Every	 individual	niche	has	a	different	 focus	and	analytics	products	have	
different	 target	 groups	 as	well.	Monetization	 is	 possible	 if	 a	 certain	niche	 can	be	 satisfied	
with	 the	 provided	 results.	 On	 the	 other	 side,	 monetization	 is	 also	 possible	 by	 presenting	
meaningful	insights.	Meaningful	insights	can	be,	for	example,	behavioral	patterns	that	result	
out	of	an	algorithm	which	potentially	works	on	multiple	data	sources	at	the	same	time.	This	
may	 also	 span	 across	 data	of	 different	 customers.	As	 an	 example,	when	 two	e-commerce	
websites	are	tracked,	the	analytics	provider	gets	data	from	both	websites.	At	the	same	time,	
the	analysts	from	each	website	only	see	their	own	website	and	only	have	access	to	their	own	
data.	However,	 the	analytics	provider	 is	able	to	combine	the	 learnings	 from	both	websites	
and	by	doing	so,	it	can	provide	more	value	to	both	customers.	Every	analytics	provider	wants	
to	have	 such	 kind	of	proprietary	data.	On	 the	one	hand,	 this	 can	be	data	which	 is	 gained	
through	 an	 exclusive	 tracking,	 e.g.,	 very	 detailed	 user	 behavior	 in	 certain	 verticals	 or	
relationships	 in	 (social)	 networks.	 On	 the	 other	 hand,	 this	 can	 be	 achieved	 via	 access	 to	
additional	data	sources	and	aligning	this	input	with	the	original	data,	e.g.,	geo	location	and	
demographic	information	for	all	tracked	users.	

As	in	the	example	above,	an	analytics	provider	is	not	only	able	to	see	users	of	one	website	or	
app.	 Every	 analytics	 provider	 has	 numerous	 customers,	 and	 therefore,	 multifaceted	
information	about	different	users	per	website	or	app,	and	often	across	different	customers.	
Once	an	analytics	provider	has	this	information,	it	tries	to	secure	and	protect	it	as	much	as	
possible.	 This	 often	 results	 in	 limited	 access	 to	 the	 tracked	 raw	 data.	 Each	 company	 is	
protecting	their	own	position	and	their	competitive	advantage	as	much	as	they	can.	

Another	reason	is	the	preprocessing	of	the	data.	Many	dashboard	driven	analytics	platforms	
are	using	aggregated	data	to	simplify	and	enable	 fast	and	easy	access	to	 information.	One	
prominent	 example	 is	 Google	 Analytics	 (GA).	 The	 geo	 distribution	 of	 all	 users	 can	 be	
accessed	with	only	one	click.	Often,	GA’s	customers	do	not	need	information	on	a	single	user	
level	but	aggregated	data	is	sufficient.	The	objective	is	mainly	to	show	cohorts	of	users.	This	
also	 has	 simple	 technical	 reasons:	 saving	 bandwidth	 and	 building	 human	 readable	
visualizations.		

Depending	 on	 the	 complexity	 of	 an	 app	 or	 website,	 there	 is	 a	 vast	 number	 of	 event	
combinations	 a	 user	 can	 do.	 For	 example,	 the	 free	 language-learning	 platform	 duolingo2,	
that	 includes	 a	 language-learning	website	 and	a	 corresponding	app,	needs	a	 sophisticated	
tracking	strategy.	Assuming	every	hit	of	the	keyboard	buttons	during	a	translation	lesson	is	
																																																								
2 https://www.duolingo.com/

 D2.1,	V4.0

	

Page	15	

tracked,	a	translation	of	“Yes,	please.”	to	the	German	“Ja,	bitte.”	needs	ten	events.	This	vast	
amount	 of	 events	 would	 not	 improve	 any	 analytics	 but	 instead	 present	 an	 enormous	
overload	of	information	and	introduce	a	lot	noise.	Instead,	it	is	more	important	to	know,	if	
the	task	was	solved	correctly,	and	how	long	it	took	to	solve	it.	This	would	lead	to	two	events	
only,	 first	 starting	 the	 task	 and	 then	 ending	 the	 task.	 The	 latter	 event	 would	 contain	 an	
additional	 value	of	 “true”	or	 “false”	 to	provide	 information	about	 the	user's	performance.	
Nevertheless,	 this	 still	 creates	 a	 flood	 of	 events	 for	 millions	 of	 users.	 Therefore,	 high	
bandwidth	is	needed	and	a	large	data	storage.	Of	course,	simply	the	amount	of	people	who	
are	using	duolingo	(they	had	110	million3	users	worldwide	in	2015)	presents	challenges	for	
any	 kind	 of	 infrastructure.	 Especially,	 for	 analytics	 provider	 which	 receive	 all	 the	 tracking	
data.	 duolingo	 is	 known	 to	 use	 Mixpanel4	 among	 other	 services.	 Mixpanel	 calls	 itself	 an	
advanced	 analytics	 provider.	While	 using	Mixpanel,	 one	 will	 recognize	 certain	 constraints	
when	 it	comes	to	accessing	data	and	receiving	data.	This	 is	because	any	analytics	provider	
has	to	pay	to	store	and	to	process	tracking	events	within	its	infrastructure.	Costs	are	scaling	
with	 the	 number	 of	 users.	 Therefore,	 downloading	 data,	 querying	 databases,	 or	 enriching	
data	will	be	charged	by	the	service.	Or	it	is	only	available	in	higher	priced	tiers.	Mixpanel	as	
an	example,	limits	its	access	to	tracked	raw	data	and	also	to	the	amount	of	data	that	can	be	
tracked.	This	can	be	seen	in	Mixpanels	pricing5,	the	number	of	custom	events	which	can	be	
tracked	is	limited	to	15	custom	events.	Also,	the	export	of	raw	data	will	take	up	to	five	days6.	
To	build	the	metrics	in	D1.2,	and	to	be	able	to	enrich	the	data	as	the	project	envisions,	using	
a	provider	like	Mixpanel	is	not	a	feasible	approach.	

Even	 if	 raw	 data	 access	 was	 granted,	 and	 there	 was	 no	 limitation	 to	 custom	 events,	 an	
infrastructure	 is	 required	 to	handle	 the	 tracked	data.	 It	 is	unlikely	 that	 the	operator	of	an	
education	 learning	website	 or	 a	 provider	 of	 such	 an	 app	 has	 the	 resources,	 the	 technical	
skills	and	the	capacity	to	handle	raw	analytics	data	and	to	process	it.		

2.1	 Advanced	Analytics	
There	 were	 two	 major	 developments	 in	 the	 analytics	 space	 in	 the	 past	 years.	 The	 first	
significant	 change	was	 the	 advancement	 from	 analytics7	 to	 predictive	 analytics.	 Predictive	
analytics	allows	making	predictions	based	on	past	data	which.	Today,	predictive	analytics	is	
considered	to	be	more	or	less	a	subset	of	analytics.	It	mainly	supports	the	decision-making	
process	for	an	analyst.	Many	companies,	such	as	Mixpanel,	Localytics8	or	Amplitude9,	try	to	
extend	 their	 classic	analytics	 service	with	 the	ability	 to	make	predictions	of	user	behavior.	
This	kind	of	applied	machine	learning	is	limited	in	accessibility	and	reconfigurability.		

																																																								
3	 https://techcrunch.com/2015/06/10/duolingo-raises-45-million-series-d-round-led-by-google-
ventures-now-valued-at-470m/
4 http://mixpanel.com/
5	https://mixpanel.com/pricing/
6	https://mixpanel.com/help/reference/exporting-raw-data
7	This contains also the access to shallow analytics
8 https://www.localytics.com/
9https://amplitude.com/

 D2.1,	V4.0

	

Page	16	

Preconfigured	interfaces	allow	users	of	these	services	to	make	predictions	on	their	tracked	
data	easily.	On	the	one	hand,	such	applications	are	realized	with	only	a	few	clicks.	But	on	the	
other	hand,	the	usage	of	the	output	for	automating	marketing	campaigns	or	just	viewing	the	
used	 features	 is	 limited.	 Additionally,	 the	 enhancement	 or	 editing	 of	 the	 models,	 or	 the	
learning	process	is	not	possible.	

After	predictive	analytics,	the	term	prescriptive	analytics10	has	become	popular	recently.	The	
naming	of	prescriptive	 analytics	 stems	 from	 the	 combination	of	predictive	 and	descriptive	
analytics.	But	 it	 is	 supposed	 to	mean	much	more.	 Prescriptive	 analytics	 is	 the	union	of	 all	
applied	scientific	disciplines	 that	support	decision	making,	allow	a	pro-active	action	and	at	
the	end	get	 feedback	 to	 improve	decisions	 and	 re-enforcement	 actions.	 It	 closes	 the	 loop	
between	observations,	decisions,	and	actions.	

2.2	 Learning	Analytics	
With	 respect	 to	 the	 required	 metrics	 presented	 in	 deliverable	 D1.2,	 there	 is	 no	 known	
analytics	platform	that	is	able	to	provide	all	this	information.	General	analytics	providers	are	
often	featuring	a	certain	number	of	metrics1112,	like	the	average	session	time,	lifetime	value,	
attribution	 source,	 or	 retention.	 Some	of	 these	metrics	 like	 average	 session	 time	 are	 also	
interesting	 in	 the	 educational	 learning	 context.	 But	 metrics	 such	 as	 lifetime	 value	 or	
attribution	 source	 do	 not	 play	 an	 important	 role	 in	 analyzing	 student's	 learning	 behavior.	
The	main	problem	 is	 that	 the	pedagogical	 aspects	are	not	 taken	 into	account	by	 common	
analytics	 platforms.	 On	 the	 one	 hand,	 the	 tools	 are	 focused	 on	 e-commerce	 and	 apps	 in	
general.	This	 is	because	the	metrics	 in	the	 learning	analytics	space	are	not	as	standardized	
and	generally	applicable	as	in	other	industry	sectors.	On	the	other	hand,	using	results	gained	
from	 analytics	 in	 a	 pedagogical	 environment	 also	 requires	 a	 service	 that	 can	 handle	 and	
return	results	that	are	interpretable	by	educationists	and	give	theses	persons	the	ability	to	
adjust	the	educational	learning	application.	

																																																								
10	Deep analytics could be placed in the prescriptive analytics space
11	The 8 Mobile App Metrics That Matter http://info.localytics.com/blog/tracking-lifetime-value-for-apps
12 How can I use Mixpanel to achieve my business goals? -
https://mixpanel.com/help/questions/articles/what-should-i-track

 D2.1,	V4.0

	

Page	17	

3 Infrastructure	

In	this	section,	we	begin	by	explaining	how	we	designed	our	general	infrastructure	and	how	
it	works	technically.	In	the	following	sections,	we	describe	different	aspects	of	each	layer	in	
greater	detail.	Looking	at	the	entire	infrastructure,	we	can	distinguish	at	least	four	different	
layers.	

• Layer	1:	Data	tracking	(Section	4)	
• Layer	2:	Data	aggregation	(Section	5)	
• Layer	3:	Data	augmentation	(Section	6)	
• Layer	4:	Data	access	(Section	7)	

Figure	3.1	shows	how	all	of	those	four	layers	interact	among	each	other,	as	well	as	with	the	
virtual	 labs	 and	 the	 authoring	 tool.	 In	 a	 nutshell,	 the	 pipeline	 is	 initiated	 by	 a	 virtual	 lab	
sending	 data	 to	 the	 infrastructure.	 This	 data	 is	 then	 stored	 persistently,	 enriched	 with	
additional	information	and	stored	in	an	aggregated	form	in	a	database.	Then	we	have	a	data	
augmentation	layer	that	can	make	use	of	raw	data	as	well	as	of	preprocessed	data	to	employ	
deep	 analytics.	 The	 results	 from	 this	 layer	 are	 made	 accessible	 in	 same	 the	 way	 as	 the	
aggregated	data	by	means	of	an	API.	This	API	can	be	queried	by	the	other	components	such	
as	the	virtual	labs	or	the	authoring	tool.	However,	it	also	provides	raw	access	to	all	partners,	
to	develop	algorithms	and	visualizations	based	on	all	tracked	data.	

	
Figure	3.1	The	diagram	gives	an	overview	how	the	GIO	infrastructure	is	built	and	how	it	

interacts	with	the	other	components	of	the	ENVISAGE	project.	The	different	parts	of	the	GIO	
infrastructure	such	as	data	tracking,	data	aggregation,	data	augmentation,	and	data	access	

are	described	in	the	following	sections.	

We	now	describe	 each	 layer	 in	 greater	 detail.	While	 initially	 Layer	 3	 is	 not	 fundamentally	
necessary,	we	still	describe	 it	as	central	part	of	 the	 infrastructure,	as	 it	 influences	the	way	

 D2.1,	V4.0

	

Page	18	

deep	analytics	will	be	incorporated	in	the	future.	As	all	four	layers	are	run	in	the	cloud	based	
on	Amazon	Web	Service	(AWS),	we	will	also	give	reference	to	different	AWS	products	that	
we	are	making	use	of	to	operate	the	infrastructure.	Using	a	cloud	based	service	has	various	
advantages	but	it	comes	naturally	with	some	disadvantages	as	well.	Scaling	an	infrastructure	
like	the	one	we	envision,	reduces	the	work	for	various	use	cases	to	a	few	mouse	clicks.	The	
reliability	 is	 guaranteed	 by	 the	 cloud	 service	 based	 on	 various	 Service	 Level	 Agreements	
(SLA).	 And	 in	 the	 setting	 of	 platform-as-a-service,	 one	 always	 benefits	 from	 continuous	
improvements	of	the	products.	On	the	other	hand,	one	quickly	starts	to	become	dependent	
on	 a	 single	 service	 provider	 as	 moving	 parts	 of	 the	 infrastructure	 becomes	 unfeasible	
without	 serious	 efforts.	 Additionally,	 many	 of	 the	 benefits	 come	 at	 their	 costs.	 Certain	
matters	 of	 expense	 are	 often	 neglected	 but	 become	 apparent	 in	 the	 cloud	 setting,	 for	
example	data	transfer	costs.	

 D2.1,	V4.0

	

Page	19	

4 Data	Tracking		

To	 improve	 educational	 learning,	 we	 have	 to	 represent	 the	 behavior	 of	 students.	 This	
behavior	 is	 tracked	 through	 their	 usage	 patterns	 of	 educational	 learning	 tasks.	 In	 a	 first	
experiment,	we	tracked	various	events	which	students	triggered	while	solving	different	tasks	
in	a	virtual	lab.	

We	 now	 describe	 the	 tracking	 layer	 and	 common	 definitions	 are	 introduced.	 We	
differentiate	 between	 metadata	 and	 telemetric	 data.	 Furthermore,	 we	 introduce	 the	
concept	of	event-based	tracking.	

• Metadata:	 There	 are	 different	 types	 of	 metadata.	 At	 this	 point,	 the	 technical,	
ecological,	 environmental,	 and	demographic	metadata	 should	be	mentioned.	 Every	
branch	and	technology	provides	different	definitions	and	types	of	metadata.	We	are	
focusing	on:		

o Technical	 metadata:	 For	 example,	 the	 platform	 type,	 operating	 system	 or	
application	 version.	 These	 attributes	 resolve	 information	 about	 the	 used	
device,	system,	and	application.	

o Ecological	 and	 environmental	 metadata:	 “Who,	 What,	 Where,	 When”.	 For	
example	the	user	identifier,	the	geo	location	or	a	timestamp.	These	attributes	
resolve	information	about	the	user.	

o Demographic	metadata:	Demographic	data	 is	user	 specific	data	as	well.	The	
data	holds	demographic	information	about	a	user.	Age,	gender,	and	language	
are	 classic	 examples	 for	 demographic	 data.	 The	 only	 demographic	
information	which	is	collected	at	the	moment,	are	the	language	and	country	
information.	 These	 attributes	 are	 part	 of	 the	 metadata	 and	 part	 of	 every	
event	request	to	the	GIO	tracking	infrastructure.	

• Telemetric	 data:	 Telemetric	 data	 is	 a	 continuous	 stream	 of	 data.	 It	 is	 used	 to	
represent	 the	usage	behavior	 and	actions	 that	manipulate	 the	 current	 state	of	 the	
application.	 The	 view	 of	 a	 page	 could	 be	 part	 of	 telemetric	 data,	 but	 also	 the	
interaction	with	a	control	item.	In	the	case	of	a	“view”-event	for	a	webpage,	we	want	
to	know	which	page	was	viewed.	In	the	case	of	interactions	with	the	control	item,	we	
also	want	 to	 know	how	 the	 state	 of	 the	 item	has	 changed	 due	 to	 the	 interaction.	
Especially	for	deep	analytics,	this	provides	information	that	can	be	used	to	adjust	or	
improve	 behavior.	 Telemetric	 data	 can	 be	 unfolded	 to	 simple	 event	 streams	 or	 to	
event	streams	that	also	have	additional	context	information,	 like	changing	a	certain	
state	or	reaching	a	certain	state.	

4.1	 Concept	of	Event-based	Tracking	
While	GIO	 is	 receiving	a	continuous	 stream	of	events	of	 the	students	 (which	are	 the	main	
users	in	educational	learning),	GIO	is	able	to	get	information	about:	

• How	are	they	solving	a	lab?	
• How	is	the	distribution	of	the	events	which	were	triggered?	

 D2.1,	V4.0

	

Page	20	

• How	is	the	behavior	during	one	session?	
• How	often	does	a	student	return?	
• How	does	a	student	change	a	certain	state?	
• When	does	a	student	reach	a	certain	state?	
• How	do	different	usage	sequences	look	like?	

To	answer	these	questions,	GIO	needs	data	that	is	tied	to	every	event.	GIO	typically	uses	two	
main	variables	 to	track	an	event.	The	 first	 is	 the	action,	e.g.,	“click”,	“view”,	“start”.	These	
variables	are	the	specific	actions	which	are	done	by	a	user.	The	second	variable	can	specify	
an	object,	e.g.,	“lesson”.	These	two	variables	are	concatenated	and	delimited	by	a	".".	This	
approach	can	be	used	to	build	hierarchies	with	more	than	two	levels.	Furthermore,	GIO	can	
make	use	of	an	identifier	field	“event_id”,	to	identify	the	event.	

As	 an	 example,	 if	 one	 wants	 to	 track	 the	 “start”-event	 of	 a	 lesson,	 the	 event	 would	 be	
"start",	the	specifier	would	be	"lesson"	and	the	event	identifier	could	be	"12"	if	lessons	were	
simply	enumerated.	

If	an	event	has	a	certain	value,	 like	a	duration	or	a	reached	level,	GIO	provides	the	custom	
field	“event_value”.	This	allows	GIO	to	track	the	duration	of	an	event.	This	would	result	for	
the	event	 "finish.lesson",	with	 the	event	 id	 "	12",	 to	an	event	value	of	 “65”	 if	 the	 time	 to	
complete	the	lesson	would	have	been	65	seconds.	

To	handle	an	event	and	to	track	a	request,	GIO	has	defined	three	mandatory	fields:	

• user_id	(string):	A	unique	user	identifier	which	is	unique	per	virtual	lab.	
• ts	(integer):	The	Unix	timestamp	when	the	event	was	triggered.	
• event	(string):	The	name	of	the	tracked	event.	
• app_key	(string):	This	key	 is	used	to	 identify	the	application	and	it	 is	unique	for	the	

entire	platform.	

Furthermore,	GIO	has	the	capability	to	handle	additional	attributes	in	form	of	metadata:	

• event_id	 (string):	 The	 event	 identifier	 which	 specifies	 the	 event,	 e.g.,	 a	 lesson	
identifier	

• event_value	(string):	The	event	value,	e.g.,	the	duration	of	a	lesson.	
• timezone	 (integer):	 The	UTC	 timezone	offset	 in	milliseconds.	 For	UTC+1,	we	would	

receive	3600000	
• locale	(string):	The	locale	represents	the	language	as	ISO-639	and	the	country	as	ISO-

3166	based	on	the	locale	from	the	device.	As	an	example,	for	a	system	and	browser	
with	a	German	locale,	we	would	receive	“de_DE”	

• app_version	(string):	The	application	version	which	 is	used.	This	 information	can	be	
used	to	distinguish	between	different	application	versions.		

• device_type	(string):	The	name	of	the	device	type.	For	now,	we	hardcoded	“desktop“	
as	device	type	in	the	experimental	application	because	the	browser	does	not	always	
allow	to	retrieve	a	particular	device.	

• screen	(string):	A	combination	of	width	and	height	of	the	devices	screen	that	is	used.	
• In	the	future:	

 D2.1,	V4.0

	

Page	21	

o group_id13	 (string):	 An	 unique	 identifier	 for	 a	 group,	 class,	 category,	 or	
company.	A	user	can	have	more	than	one	“group_id”.	

The	 following	 data	 object	 shows	 a	 tracking	 call	 of	 an	 event	 that	 GIO’s	 backend	 would	
typically	 receive.	 This	 example	 is	 taken	 from	 the	 “Wind	 Energy	 Lab”14.	 The	 corresponding	
integration	is	described	in	Section	4.6	:	

{
"user_id": "1523318114.1486661404",

 "remote_addr": "xxx.xxx.xxx.xxx",
 "locale": "de_DE",
 "screen": "1366x768",
 "ts": 1486665339,
 "app_key": "90e167a8ba993ab18f52ec7fdb44fdea",
 "user-agent": "Opera/9.63 (Macintosh; Intel Mac OS X; U;
en) Presto/2.1.1",
 "server_ts": 1486665338,
 "app_version": 1.0,
 "device_type": "desktop",
 "timezone": 3600000,
 "event": "finish.lesson",
 "event_id": " 12".
 "event_value": "65"
}

4.2	 System	Architecture	for	Tracking	
The	 infrastructure	 needs	 to	 suffice	 different	 technical	 requirements.	 We	 describe	 these	
requirements	in	the	following	and	also	how	we	plan	to	satisfy	these	requirements:	

• Scalability:	With	 an	 increasing	number	of	 virtual	 labs	 and	an	 increasing	number	of	
active	students	using	the	labs	on	a	regular	basis,	the	tracking	infrastructure	needs	to	
scale	accordingly.		

• Reliability	and	Availability:	 If	 the	 tracking	 infrastructure	 is	offline,	data	will	 be	 lost	
irrecoverably.	 To	 prevent	 this	 from	 happening,	 the	 infrastructure	 always	 operates	
several	 tracking	 instances	 at	 the	 same	 time.	 At	 any	 point	 in	 time,	 there	 should	 be	
sufficiently	many	machines	running	that	a	failure	of	one	machine	does	not	result	 in	
any	problems.	On	 top	of	 that,	 data	 should	be	 stored	 redundant	 that	 a	 data	 loss	 is	
only	possible	with	low	probability.	

• Data	Protection:	 It	 is	 critical	 that	 data	 is	 protected	 from	unauthorized	 access.	 This	
typically	does	not	only	hold	for	the	data	stored	persistently	but	also	during	transfer.	

4.2.1		 Scalability	
There	are	different	aspects	of	the	infrastructure	that	need	to	scale	based	on	the	number	of	
daily	active	users	and	events	sent	per	virtual	lab.	The	infrastructure	also	needs	to	be	able	to	

																																																								
13	This attribute is necessary to satisfy the metrics raised in D1.2
14 http://windenergy.ea.gr/

 D2.1,	V4.0

	

Page	22	

handle	peak	times,	e.g.,	weekday	mornings	in	Europe.	In	first	place,	the	tracking	layer	needs	
to	handle	all	 incoming	 requests	 from	all	 virtual	 labs.	This	needs	 to	be	guaranteed	without	
any	downtimes	because	these	would	cause	unrecoverable	loss	of	raw	data.	As	soon	as	more	
virtual	 labs	 are	 tracked,	 a	 single	machine	may	 not	 be	 sufficient	 anyhow,	 so	 that	 the	 load	
should	be	distributed	among	several	machines	in	a	uniform	way.	

To	 handle	 these	 aspects,	 GIO	 uses	 an	 AWS	 Elastic	 Load	 Balancer	 (ELB).	 An	 ELB	 allows	
providing	one	central	access	point	on	the	Internet,	e.g.,	https://stream.goedle.io,	where	all	
data	 is	 sent	 to	 but	 then	 forwarded	 to	 different	 machines	 to	 handle	 the	 incoming	 data	
stream.	One	can	easily	attach	additional	machines	to	an	ELB	as	necessary.	With	AWS	Auto	
Scaling,	this	can	even	be	adjusted	during	different	hours	of	the	day.	In	the	context	of	AWS,	
we	also	refer	to	Elastic	Compute	Cloud	(EC2)	instances	when	talking	about	machines	behind	
an	ELB.	AWS	offers	different	EC2	 instance	 types	 for	different	purposes.	 Each	EC2	 instance	
typically	 has	 an	 Elastic	 Block	 Store	 (EBS)	 attached	 to	 it	 where	 the	 instances	 store	 data	
persistently.	

Having	a	load	balancer	in	place,	multiple	tracking	instances	receive	all	incoming	requests	in	
form	 of	 events	 as	 described	 above.	 These	 events	 are	 then	 stored	 persistently	 on	 an	 EBS	
device	 of	 the	 instance.	 These	 instances	 are	 operated	 by	means	 of	 EC2	 instances	 of	 small	
computational	power	but	capable	of	high	Input/Output	(I/O)	performance.	The	sole	purpose	
of	the	tracking	instances	is	to	track	the	raw	events	and	other	machines	are	responsible	for	
aggregating	 the	data	 and	 storing	 the	 result	 in	databases.	 Since	each	 tracking	 instance	has	
only	 storage	 for	 a	 limited	 time	 range,	 the	 data	 is	 copied	 everyday	 to	 a	 second	 storage	
without	 such	 data	 size	 limitations.	 When	 data	 is	 accessed	 for	 aggregation	 and	 further	
processing,	 the	 raw	data	 is	always	accessed	on	 this	 storage	 to	avoid	 interference	with	 the	
basic	tracking.	Obviously,	this	storage	for	all	historic	user	data	needs	to	scale	as	well.	Here,	
we	make	use	of	AWS	Simple	Storage	Service	(S3)	which	acts	essentially	 like	an	endless	File	
Transfer	Protocol	(FTP)	storage	with	additional	encryption	capabilities.	

4.2.2		 Reliability	and	Availability	
Two	additional	reasons	to	use	AWS	are	their	reliability	and	availability.	Amazon	grants	with	
their	EC2	SLA15	a	monthly	uptime	percentage	of	at	least	99.95%.	With	the	given	resources,	it	
is	 impossible	 to	 build	 a	 comparable	 system	 that	 has	 the	 same	 reliability	 and	 availability	
guaranteed	 based	 on	 a	 bare	metal	 solution.	 Especially	 when	 it	 comes	 to	 scalability,	 AWS	
supports	building	a	system	that	easily	can	be	scaled.	In	the	case	of	increasing	traffic,	we	have	
the	ability	 to	add	more	EC2	 instances	behind	a	ELB	with	 the	 same	availability	 guarantees.	
Furthermore,	 AWS	 provides	 high	 bandwidth	 and	 it	 is	 not	 necessary	 to	 maintain	 any	
additional,	non-virtual,	hardware.	This	means	we	do	not	have	 to	care	about	any	 failure	of	
hardware.	 S3	 falls	 under	 the	 SLA	 as	well	 and	has	 additional	 guarantees	when	 it	 comes	 to	
data	persistence	and	data	loss	protection.	So	far,	we	have	not	experienced	any	data	loss	due	
to	AWS	failures	and	only	rare	cases	of	EC2	outages.	

																																																								
15	https://aws.amazon.com/ec2/sla/?nc1=h_ls

 D2.1,	V4.0

	

Page	23	

4.2.3		 Data	Protection	
Another	 important	part	of	 the	tracking	 infrastructure	 is	 to	protect	data	 from	unauthorized	
access.	 For	 this	 reason,	we	 are	 not	 only	 using	 Secure	 Sockets	 Layer	 (SSL)/Transport	 Layer	
Security	(TLS)	to	encrypt	data	at	transfer,	but	also	encrypt	all	raw	data	at	rest,	too.		

Using	SSL/TLS	connections	for	all	data	transfer	requires	the	purchase	of	different	certificates.	
Right	 now,	 GIO	 has	 purchased	 certificates	 for	 different	 subdomains	 such	 as	
https://stream.goedle.io	for	secure	tracking	or	https://api.goedle.io	for	secure	data	access.	
These	certificates	can	easily	be	added	to	an	ELB	so	that	all	traffic	between	a	virtual	lab	and	
AWS	is	encrypted.	Only	key	employees	at	GIO	have	access	to	the	keys	associated	with	the	
certificates	to	ensure	that	none	of	these	keys	are	accessed	by	unauthorized	persons.	

When	 data	 is	 copied	 from	 the	 tracking	 instances	 and	 stored	 on	 S3	 in	 a	 daily	 routine,	we	
encrypt	 the	 data.	 Therefore,	 the	 data	 is	 useless	 if	 the	 necessary	 encryption	 key	 is	 not	
provided.	 To	 further	 increase	 the	 level	 of	 security,	 different	 keys	 are	 used.	 To	 implement	
such	a	system,	we	make	use	of	AWS	Key	Management	System	(KMS).	KMS	helps	to	generate	
and	manage	encryption	keys.	Again,	only	key	employees	of	GIO	have	access	to	the	KMS.	

4.3	 Available	Integrations	
We	wanted	 to	 keep	 all	 options	 open	 and	 provide	 a	maximum	 flexibility	 for	 the	 tracking.	
Therefore,	 we	 decided	 to	 connect	 our	 tracking	 infrastructure	with	 Google	 Tag	Manager16	
(GTM).	GTM	is	a	client-side	tracking	aggregation	service.	

There	 are	 additional	 advantages	 of	 GTM.	 On	 the	 one	 hand,	 the	 tracking	 can	 be	 used	 for	
websites	and	mobile	application	at	the	same	time	without	additional	integration	effort.	On	
the	other	hand,	we	can	change	the	tracking	script	without	updates	on	the	client-side.	This	
also	 improves	the	maintenance	abilities	of	the	data	collection	process.	GTM	has	become	a	
very	popular	and	widespread	tool	in	particular	for	web-based	applications.	

4.3.1		 Google	Tag	Manager		

The	 Google	 Tag	 Manager	 structures	 a	 website	 or	 app	 as	 a	 container.	 This	 container	 has	
defined	tags.	A	tag	is	a	functional	component	which	can	be	configured	with	rules.	These	Tags	
are	connected	to	actions	which	take	place	on	the	website	or	app.	

An	action	is	initialized	by	a	user	or	the	execution	of	a	script.	Such	an	action	is	a	predefined	
point	in	the	source	code.	As	an	example,	when	the	user	triggers	a	"click"-event,	GTM	listens	
to	the	“click”-events	and	forwards	the	information	about	the	executed	status	at	the	moment	
of	 the	 interaction.	 The	 user	 does	 not	 notice	 anything	 and	 instead,	 the	 website	 or	 app	 is	
working	as	before.	In	the	background,	an	Hypertext	Transfer	Protocol		request	is	fired	with	
the	attributes	defined	in	the	tag.	

The	 process	 of	 collecting	 data	 from	 a	 user's	 click	 on	 a	 button	 to	 make	 it	 accessible	 is	
structured	in	three	phases.	

1. Implementation	of	the	GTM	script	into	a	website	or	a	mobile	app:	Google	provides	
a	 code	 snippet	 which	 can	 be	 used	 to	 add	 the	 GTM	 functionality	 to	 a	 website	 or	

																																																								
16 https://tagmanager.google.com/

 D2.1,	V4.0

	

Page	24	

mobile	app.	This	snippet	also	downloads	the	GIO	JavaScript	which	is	used	to	forward	
the	tracking	 information	to	the	GIO	 infrastructure.	To	 fire	a	custom	event,	which	 is	
not	predefined	by	GTM,	one	has	to	add	a	tracking	call	at	every	position	in	the	code.	
This	 tracking	call	 corresponds	 to	an	event.	 Furthermore,	a	data	 layer	 is	defined	 for	
the	GTM.	By	default,	it	has	no	information	but	it	can	be	enriched	with	information	on	
the	client-side.	As	an	example,	a	timezone	offset	can	be	added.	

2. Building	a	tag	and	defining	events	which	should	be	forwarded:	By	default,	the	GTM	
can	forward	every	action	on	a	page.	To	have	a	preselection	and	to	filter	out	useless	
information,	we	only	 track	 the	events	 that	we	 really	want	 to	use	 later	 for	 learning	
analytics.	This	filter	can	be	implemented	in	the	GTM	dashboard.	This	can	be	achieved	
with	a	regular	expression	that	contains	the	name	of	the	valid	events.	

3. JavaScript	execution:	The	data	layer	and	the	GTM	information	are	forwarded	to	the	
GIO	 JavaScript,	 which	 provides	 a	 track	method.	 This	 track	method	 needs	 the	 data	
layer	 that	 contains	 all	 mandatory	 attributes.	 To	 have	 a	 reliable	 access	 to	 the	 GIO	
JavaScript,	GIO	decided	to	store	this	script	with	help	of	Amazon	CloudFront	Content	
Delivery	Network	(CDN)17.		

The	 implementation	 guide	 for	 using	 GIO	with	 GTM	 for	 the	 ENVISAGE	 project	 was	 shared	
with	all	partners	and	has	already	been	used	successfully	for	the	first	implementation.	

Since	the	JavaScript	is	accessible	via	CloudFront	CDN,	we	can	change	the	script	and	adjust	it.	
Therefore,	 GIO	 can	 control	 the	 tracking	 and	 the	 output	 of	 the	 third	 tracking	 phase.	
Furthermore,	 the	availability	 follows	 the	Amazon	SLA.	 In	 this	 respect,	GIO	 is	 able	 to	make	
this	script	accessible	under	common	industrial	availability	standards.	

4.3.2		 HTTP-API	
Although	the	GTM	allows	tracking	in	many	different	scenarios,	we	sometimes	have	the	need	
for	submitting	user	data	without	the	GTM	framework.	One	example	of	such	a	use	case	can	
be	 the	 backend	 of	 a	 virtual	 lab	 that	 also	 provides	 information	 on	 the	 performance	 of	
students.	For	such	cases,	GIO	also	provides	a	pure	HTTP-API.	This	HTTP-API	is	able	to	receive	
all	information	defined	in	Section	4.1	.	To	send	a	request	to	the	HTTP-API,	it	is	necessary	to	
authenticate	 at	 the	 GIO	 backend.	 An	 example	 HTTP-request	 could	 look	 like	 the	 following	
curl18-command:		

curl
-X POST -i
-H "Content-Type: application/json"
-H "Authorization: <HashValue>" -d '{
"app_key":"1234",
"user_id":"123451243",
"event":"finished.lesson",
"event_id": "12",
"event_value": "65",

																																																								
17 Amazon CloudFront Content Delivery Network - https://aws.amazon.com/de/cloudfront/
18 https://curl.haxx.se/

 D2.1,	V4.0

	

Page	25	

"ts":123545612,
"device_type":"desktop",
"local":"de_DE",
"geohash":"wp123234",
"user_agent":"Opera/9.63 (Macintosh; Intel Mac OS X; U;
en) Presto/2.1.1",
"screen":"640x480",
"timezone":3600000,
"app_version":"1.1.1"}' https://stream.goedle.io/track

The	 body	 of	 the	 POST-request	 simply	 contains	 a	 JavaScript	 Object	 Notation	 (JSON)-object	
with	 the	 tracking	 data.	 Besides	 the	 body,	 the	 request	 needs	 two	 header	 fields,	 namely	
"Content-Type"	and	"Authorization".	The	former	indicates	that	the	request	submits	data	in	
the	 JSON	 format	and	 the	 latter	 field	provides	 the	 signature	 for	 the	authorization.	Building	
the	signature	works	as	follows:	

1. The	JSON-object	needs	to	be	transformed	to	a	string.	
2. This	JSON-string	is	concatenated	with	an	API-key	that	we	provide.	
3. The	concatenation	of	the	JSON-string	and	the	API	key	is	then	hashed	with	the	Secure	

Hash	Algorithm	1	(SHA-1).	
4. The	signature	can	now	be	used	for	authorization.	

4.4	 Historical	Data	Import	
We	do	not	only	want	to	collect	data	from	the	tracking	present	in	the	virtual	labs	which	we	
already	 started.	 Instead,	 there	 is	 sometimes	 another	 opportunity	 to	 enrich	 the	 data	with	
historical	 information.	The	main	 reason	 to	use	historical	data	 is	 to	extend	 the	observation	
period.	Also	with	respect	to	WP3,	the	system	should	have	the	capability	to	inject	historical	
data	which	was	collected	before	the	start	of	the	real-time	tracking.	

A	historical	import	requires	data	in	our	format.	Before	we	can	inject	historical	data,	the	data	
has	to	be	transformed	to	the	format	described	in	Section	4.1	.	Otherwise,	the	data	cannot	be	
used.	This	leads	to	mandatory	information	that	historical	data	must	have:	

• Unique	user	identifier	
• Timestamp	when	the	event	was	triggered	
• Event	name	of	the	action	that	was	tracked	

There	are	some	pitfalls	that	we	have	to	be	aware	of.	 In	Section	5	we	will	see	how	the	raw	
data	is	aggregated.	Once	this	is	done,	there	is	an	attribute	that	indicates	the	first	occurrence	
of	 a	 user.	 This	 attribute	 is	 important	 to	 identify	 the	 user	 journey	 and	 provides	 the	
information	at	which	time	the	user	journey	began.	If	we	now	want	to	use	historical	data,	we	
have	to	take	 into	account	that	the	first	seen	event	could	be	earlier	 in	time.	E.g.,	we	saw	a	
user	on	December	30th,	2016,	but	now	we	get	historical	data	from	November	11th,	2016.	The	
user	 which	 was	 first	 seen	 by	 our	 system	 on	 December	 30th,	 2016,	 now	 shows	 up	 in	 this	
historical	data	set	as	well.	This	impacts	two	parts	of	the	data	process.	The	first	seen	attribute	
and	the	estimated	sessions	as	described	 in	Section	5.3.1	 	 .	 In	this	simple	case,	we	only	get	
another	session	but	this	session	 is	now	the	first	session	 in	the	order	and	must	be	 inserted	
before	the	already	grouped	sessions.	Therefore,	we	have	to	start	a	recalculation	of	the	user’s	

 D2.1,	V4.0

	

Page	26	

sessions	and	set	a	new	first	seen	attribute.	This	process	has	to	be	robust	because	there	are	
different	scenarios	that	can	arise.	

Table	4.1	Possible	historical	import	scenarios	
Historical	Import	Scenarios	

Event	Sequence	 Old	Sessions	 New	Sessions	

E1	-	20min	-	IE1	-	15min	-	E2	 |E1|E2|	 |E1-IE-1E2|	

E1	-	5min	-	IE1	-	20min	-	E2	 |E1-E2|	 |E1-IE-1E2|	

IE1	-	31min	-	E1	 |E1|	 |IE1|E1|	

IE1	-	10min	-	IE2	 -	 |IE1-IE2|	

E1	-	31min	-	IE1	-	31min	E2	 |E1|E2|	 |E1-IE1-E2-IE2|	

Historical	data	is	not	always	data	that	is	older	than	the	first	seen	attribute.	It	can	also	be	data	
that	has	been	collected	after	the	start	of	the	tracking.	This	is	the	second	pitfall	where	we	not	
only	have	to	be	aware	of	the	first	seen	attribute	and	the	ordering	of	the	sessions.	We	also	
have	 to	 be	 aware	 of	 the	 last	 seen	 attribute	 and	 sessions,	which	 can	 be	 extended,	 due	 to	
interim	events	that	affect	the	session	grouping	and	connect	two	sessions	for	example.	Table	
4.1	describes	some	of	the	potential	scenarios.	The	following	information	is	necessary	to	read	
Table	4.1:	

• EX:	Old	event	X	
• IEX:	Injected	event	X	
• E1	-	20min	-	IE1	-	15min	-	E2:	This	shows	the	event	sequence	by	a	user	that	has	to	be	

represented	 after	 injecting	 historical	 data.	 Where	 20min/15mins	 is	 the	 time	 in	
between	two	events.	

• |:Represents	the	beginning	or	the	end	of	a	session	

4.5	 On-Boarding	Process	
As	 a	 first	 step,	 we	 clarified	 with	 the	 consortium	 which	 actions	 are	 important	 and	 which	
platform	 will	 be	 used	 to	 implement	 the	 tracking.	 Therefore,	 we	 used	 the	 first	 project	
meeting	 to	make	 an	 auditing	 for	 the	 tracking	 concepts	 and	 started	 collecting	 information	
which	actions	could	be	used	with	respect	to	an	event-based	tracking.	Additionally,	the	event	
identifiers	and	event	values	were	discussed.	

One	of	the	overall	objectives19	of	ENVISAGE	will	be	the	future	usage	of	the	developed	in	an	
economic	 environment.	 It	 is	 important	 that	 the	 project	 results	 can	 scale	 in	 an	 economic	
context.	 A	 consulting-like	 approach	with	 auditing	 and	 discussing	 each	 event	 in	 detail	 is	 a	
time-consuming	process.	To	shorten	the	required	time	of	such	a	procedure	in	the	future,	we	
started	 forging	a	process	out	of	 the	experience	we	made	during	 the	 first	 implementation.	
The	result	is	a	seven	steps	procedure20:	

																																																								
19 This aligns with WP6.
20 In later iterations, we should reduce and simplify this process even further. For a real world
scenario, a one-click solution is a desirable goal.

 D2.1,	V4.0

	

Page	27	

• Step	1:	Definition	of	the	learning	objective	
• Step	2:	Finding	events	that	enable	this	objective	
• Step	3:	Definition	of	event	identifiers	and	event	values	
• Step	4:	Check	access	to	these	events	
• Step	5:	Create	an	unique	lab	identifier	
• Step	6:	Integrate	and	activate	the	GTM	
• Step	7:	Check	data	after	the	first	day	

These	steps	will	be	used	for	the	onboarding	of	labs	in	the	future.	Additionally,	the	tracking	
should	 directly	 use	 all	 events,	 which	 are	 created	without	 additional	 configuration.	 To	 get	
custom	events,	 the	 lab	maintainer	 should	 implement	 the	 tracking	 calls	 at	 the	 appropriate	
positions	in	the	source	code.	

4.6	 Example	Integration:	Wind	Energy	Lab	
The	 “Wind	Energy	 Lab”	 from	EA	 is	 an	approved	pedagogical	 tool	which	 is	 actively	used	 in	
school	 classes.	 EA	was	able	 to	provide	 the	 consortium	with	 the	 source	 code	of	 this	 lab.	A	
close	 cooperation	 among	 all	 partners	 of	 the	 consortium	 enabled	 an	 event-based-tracking	
tailored	 towards	 learning	 analytics.	 In	 detailed	 discussions,	 every	 event	 was	 defined	 and	
further	specified	as	necessary.	

The	development	of	the	final	virtual	lab	is	not	finished	at	this	point	in	time.	To	get	an	idea	for	
the	tracking	and	the	data,	we	decided	to	use	a	lab,	which	is	already	used	by	EA	in	lessons.	To	
accelerate	 the	 data	 acquisition,	 instead	of	 the	 lab	maintainer,	GIO	 implemented	 the	GTM	
tracking	into	the	lab	and	modified	it	accordingly.	

As	one	of	 the	 results,	GIO	provided	 the	 consortium	with	a	 list	of	proposed	events	 for	 the	
initial	tracking.	Figure	4.1	exemplifies	how	this	was	done	in	the	case	of	a	tracking	point	for	
changing	the	simulation	speed	in	the	“Wind	Energy	Lab”.	

	
Figure	4.1	Tracking	proposal	for	changing	the	speed	of	the	simulation.

 D2.1,	V4.0

	

Page	28	

The	whole	 “Wind	Energy	 Lab”	was	analyzed	 in	 this	way	and	 tracking	points	were	defined.	
Afterwards,	all	events	were	summarized	and	the	full	list	of	events	for	the	“Wind	Energy	Lab”	
can	be	seen	in	Table	4.2.	The	color	code	shows	which	events	are	implemented	in	the	code	
already.	

• green:	is	implemented	and	data	was	received	
• red:	is	implemented	but	no	data	was	received	
• orange:	is	not	implemented	yet	

Table	4.2	Wind	Energy	Lab	event	definition	

Definition	of	Tracking	Points	

Event	 Event	Id	 Event	Value	 Description	

view.instructions	

	

<identifier_instruction_tab>	

	

	 Event	when	user	
views	the	
instruction	tab	

view.configuration	 	 	 Event	when	user	
views	the	
configuration	tab	

view.simulation	

	

	 	 Event	when	user	
views	the	
simulation	tab	

view.report_charts	 	 	 Event	when	user	
views	the	report	
charts	

	

increase.parameter	 <identifier_configuration>	 <|difference_old-
new|>	

Event	when	user	
increases	a	
parameter	
configuration	of	
the	lab	

decrease.parameter	 <identifier_configuration>	 <|difference_old-
new|>	

Event	when	user	
decreases	a	
parameter	
configuration	of	
the	lab	

click.simulation_speed	 <identifier_speed>	 	 Event	when	user	
adjusts	the	
simulation	speed	

start.simulation	 	 	 Event	when	user	
starts	the	
simulation	

pause.simulation	 	 	 Event	when	user	
pauses	the	
simulation	

reset.simulation	 	 	 Event	when	user	
resets	the	
simulation	

 D2.1,	V4.0

	

Page	29	

Definition	of	Tracking	Points	

configuration	

add.turbine	 	 	 Event	when	user	
adds	a	turbine	

remove.turbine	 	 	 Event	when	user	
removes	a	
turbine	

view.show_power_output_report	 	 	 Event	when	user	
views	the	power	
output	report	

view.show_values_for_current_hour	 	 	 Event	when	user	
views	the	report	
for	the	current	
hour	

view.show_pie_charts	 	 	 Event	when	user	
views	the	pie	
charts	

For	these	events,	the	GTM	snippet	was	added	to	the	source	code	of	the	“Wind	Enegery	Lab”	
with	the	following	data	layer:	

dataLayer.push({
 'event': < 'event.specifier' >,

'goedle': {
 'timezone': < utc offset >,

'locale': < language >,
'device_type': < DeviceTypeIdentifier e.g mobile,

desktop >,
}});

The	data	layer	is	necessary	because	we	added	the	time	zone	offset	to	be	prepared	for	exact	
time	analysis	 in	 the	 future.	We	also	added	the	 locale	to	distinguish	the	 information	where	
people	come	from	and	which	language	they	speak.	Additionally,	the	device	type	is	needed	to	
distinguish	 between	 desktop	 and	 mobile	 users.	 We	 get	 the	 locale	 and	 timezone	 via	 a	
JavaScript	 method	 and	 set	 the	 device	 type	 to	 “desktop”	 because	 the	 lab	 is	 not	 mobile	
optimized	 and	 runs	 on	 desktop	machines	 at	 EA.	 For	 future	 purposes,	we	will	 dynamically	
distinguish	the	device	type	programmatically.	

This	helped	us	to	start	gaining	practical	experience	and	to	fulfill	the	requirements	in	the	case	
of	the	defined	metrics.	The	metrics	are	depending	on	the	tracked	information.	For	example,	
to	calculate	"time-on-task"	metric,	the	starting	and	ending	events	have	to	be	tracked	based	
on	 a	 user	 action.	We	 also	 have	 to	 take	 care	 of	 providing	 unique	 identifiers	 and	mapping	
information	so	that	categorization	is	possible.	Every	event	has	to	be	mapped	to	a	single	user.	

 D2.1,	V4.0

	

Page	30	

5 Data	Aggregation	

The	previous	section	described	how	all	raw	data	is	tracked	and	stored	persistently	on	S3.	The	
next	 steps	merge	 all	 data	 from	 different	 tracking	 instances,	 store	 the	 intermediate	 result	
again	on	S3,	and	then	aggregate	the	data.	In	a	final	step,	this	aggregated	data	is	stored	in	a	
database.	

5.1	 Transformation	of	Raw	Data	
The	 tracking	 infrastructure	 receives	 all	 raw	 events	 in	 a	 continuous	 stream.	As	 the	 current	
infrastructure	 is	 not	 a	 complete	 real-time	 system,	 the	 data	 needs	 to	 be	 processed	 in	 a	
batchwise	 fashion.	GIO	 currently	processes	 the	data	on	a	daily	 basis	 but	 can	also	 imagine	
shorter	intervals	in	the	future	to	downsize	the	gap	to	a	full	real-time	system.	As	described	in	
the	 Section	 4.2.1	 	 ,	 the	 data	 is	 stored	 across	 different	 instances	 and	 hence	 needs	 to	 be	
merged	first.	Then	the	raw	events	of	all	virtual	labs	need	to	be	grouped	in	first	place	based	
on	the	particular	lab	and	individual	user.	Both,	the	lab	and	the	users,	have	unique	identifiers	
for	 this	 purpose.	 Afterwards,	 the	 data	 is	 available	 for	 each	 lab	 and	 can	 be	 stored	 in	 a	
database	so	that	further	processing	becomes	easier.	

At	 this	 point,	 different	 choices	 for	 the	most	 appropriate	 database	 can	 be	made.	 GIO	 has	
decided	to	first	store	the	data	in	a	Not	only	SQL	(NoSQL)	database	that	is	highly	scalable.	In	
particular	 with	 a	 small	 team,	 easy	 scalability	 had	 highest	 priority	 as	 different	 labs	 and	
learning	apps	can	quickly	grow.	For	this	purpose,	DynamoDB21	within	AWS	has	been	picked	
as	 the	 database	 of	 choice.	 Each	 user	 is	 stored	 with	 their	 metadata	 and	 their	 events	 in	
different	DynamoDB	tables.	

While	this	format	may	not	be	adequate	for	every	machine	learning	algorithm	yet,	it	satisfies	
a	number	of	requirements	so	that	further	processing	is	possible	and	generation	of	features	
for	supervised	and	unsupervised	learning	is	made	easier.	

Multiple	 EC2	 instances	 are	 required	 for	 merging	 the	 data	 from	 different	 collectors	 and	
importing	the	data	in	a	parallelized	fashion	into	DynamoDB.	The	reliability	and	availability	is	
of	 great	 importance,	 especially	 because	 of	 the	 complex	 interaction	 between	 different	
services.	 Therefore,	 the	 data	 which	 is	 stored	 in	 DynamoDB	 is	 automatically	 and	
synchronously	 replicated	across	 three	 facilities	 in	our	AWS	region.	This	protects	us	against	
failures	of	individual	machines	and	even	failures	on	facility	level.	

5.2	 Enriching	with	external	data	
Often,	additional	data	is	freely	available	that	makes	it	possible	to	further	enrich	the	data.	A	
simple	example	are	geo-locations	that	can	be	inferred	from	the	IP	address.	This	often	goes	
down	to	a	latitude	and	longitude	level.	However,	one	should	also	mention	that	the	quality	of	
such	a	resolution	is	often	limited.	Such	data	will	at	least	allow	to	compare	performance	on	a	
country	or	city	level.	

In	the	case	of	learning	analytics,	one	can	further	imagine	enriching	the	data	additionally	by,	
for	example,	obtaining	demographic	information	or	social	status.	For	many	regions	in	Europe	
																																																								
21 https://aws.amazon.com/dynamodb

 D2.1,	V4.0

	

Page	31	

there	 are	 statistics	 available	 on	 creditworthiness	 and	 wealth.	 Other	 statistics	 have	 also	
shown	a	correlation	between	education	and	social	status.	For	example,	 it	 is	often	reported	
that	income	and	education	of	parents	correlate	with	the	educational	level	of	children.	When	
now	comparing	results	from	virtual	labs	of	students	in	different	regions,	census	data	can	be	
integrated	 into	 the	 analysis.	 With	 deep	 analytics,	 this	 correlation	 and	 its	 impact	 can	 be	
further	analyzed.		

5.3	 Aggregation	and	Categorization	of	User	Data	
Often	certain	aggregated	statistics	are	of	 interest	on	a	 lab	or	user	 level.	 For	example,	 it	 is	
often	useful	to	obtain	retention	information	for	a	lab.	Retention	matrices	or	graphs	visualize	
how	often	students	return	to	a	particular	 lab.	On	the	user	 level,	 it	 is	often	more	helpful	to	
have	user	events	grouped	by	sessions	or	to	obtain	a	set	of	days	on	which	a	student	worked	
with	a	lab.	As	mentioned	above,	pedagogical	metrics	also	ask	for	a	different	aggregations	or	
categorization	of	 the	users.	Labeling	 the	students	as	high,	medium,	or	 low	performers	can	
also	be	done	during	this	step.	

5.3.1		 Calculate	sessions	
While	 it	 might	 seem	 trivial	 on	 the	 first	 look	 to	 group	 user	 events	 into	 sessions,	 a	 more	
detailed	 look	at	 the	problem	shows	 that	many	approaches	can	be	 taken.	Typically,	a	web-
based	lab	does	not	recognize	if	a	user	makes	a	break	or	leaves	the	lab.	Therefore,	the	most	
simple	form	of	session	calculation	is	using	a	fixed	duration	which	is	assumed	to	be	a	break.	
As	a	starting	point,	we	currently	assume	that	30	minutes	without	an	event	mark	the	break	
between	two	sessions.		

In	a	more	sophisticated	and	data-driven	setting,	one	would	look	at	all	inter-session	times	for	
events	and	determine	a	95-percentile	or	similar,	to	obtain	a	lab-specific	value.	For	example,	
some	virtual	labs	require	more	reading	in	between	solving	tasks.	Therefore	it	might	look	like	
that	a	user	has	left	the	virtual	lab	already.	If	the	student	then	becomes	more	active	again,	it	
looks	like	a	separate	session.	But	in	fact,	the	time	between	two	consecutive	events	was	just	
not	 long	 enough.	 On	 the	 other	 hand,	 if	 we	 pick	 that	 value	 to	 generous	 and	 the	 same	
machine	 is	 used	 by	 different	 classes	 in	 short	 period	 of	 time,	 the	 sessions	 of	 different	
students	(or	groups	of	students)	are	considered	to	be	same,	again	introducing	noise	into	the	
data.	

 D2.1,	V4.0

	

Page	32	

6 Data	Augmentation	

The	goal	of	the	ENVISAGE	project	is	to	provide	insights	to	virtual	lab	designers,	creators,	and	
maintainers	 that	 go	 beyond	 shallow	 analytics	 and	 today’s	 state-of-the-art,	 for	 example,	 a	
travel-path-analysis	of	students	or	an	automatic	segmentation	based	on	performance	and/or	
behavior.	This	information	cannot	be	read	off	from	the	raw	events	but	instead	requires	prior	
processing	 and	 computations	 on	 the	 data.	 The	 insights	 expected	 from	 this	 augmentation	
also	go	beyond	the	simple	methods	that	were	described	in	the	section	on	data	aggregation.		

In	many	cases,	a	 first	step	 is	 the	generation	of	 features	and	corresponding	feature	vectors	
per	user.	The	process	of	converting	 the	existing	data	 into	 features	 that	are	understood	by	
machine	learning	algorithms	is	often	referred	to	as	feature	engineering.	Feature	engineering	
is	an	area	within	machine	learning	that	is	very	time	consuming,	requires	expert	knowledge,	
and	is	often	impossible	to	automate.		

Once	an	extensive	set	of	features	has	been	developed,	an	intensive	preprocessing	is	typically	
required.	This	can	range	from	simple	binning,	normalization,	and	scaling,	 to	more	complex	
approaches	such	as	dimensionality	reduction.	Many	of	those	tasks	depend	on	the	algorithm	
that	is	used	later	on.	For	example,	if	an	algorithm	is	used	with	a	Euclidean-distance	function,	
one	needs	 to	 transform	a	 categorical	 into	a	numerical	 representation.	Additionally,	 values	
often	need	to	be	scaled	so	that	the	distance	function	returns	the	desired	results.	

Once	 data	 is	 in	 adequate	 form,	 the	 corresponding	 algorithms	 can	 be	 applied	 to	 the	 user	
data.	However,	 in	 a	 supervised	 learning	 setting,	 a	model	 needs	 to	 be	 learned	 first	 before	
predictions	 can	be	made.	 Typically,	 a	 learned	model	 is	 first	 verified	on	 a	 small	 test	 set	 to	
assess	its	performance.	

If	we	want	 to	provide	 an	end-to-end	 solution	 to	 virtual	 lab	managers,	 all	 the	 steps	 above	
have	to	be	run	in	the	cloud	on	a	regular	basis	as	well.	Once	a	model	is	learned,	the	model	is	
applied	to	all	new	users	that	qualify	 for	a	certain	prediction.	The	results	of	the	predictions	
are	stored	in	the	database	as	well.	Here,	a	NoSQL	database	is	not	as	well	suited	because	we	
often	want	 to	query	only	predictions	 for	users	 satisfying	 certain	 conditions.	GIO	 therefore	
runs	a	Structured	Query	Language	(SQL)	database	in	parallel	where	particularly	the	results	of	
the	machine	learning	algorithms	can	be	stored	and	queried	are	more	flexible	compared	to	a	
NoSQL	database.	For	the	same	reasons	as	in	the	NoSQL	case,	an	AWS	solution	is	used	for	the	
relational	 database.	 To	 be	 more	 precise,	 a	 PostgreSQL	 instance	 is	 run	 within	 the	 AWS	
Relational	 Database	 Service22	 (RDS).	 The	 next	 section	 will	 describe	 in	 greater	 detail	 how	
predictions	for	users	can	be	accessed.	

Example:	Let	us	assume	that	we	want	to	automatically	cluster	students	depending	of	their	
problem	solving	capabilities.	For	this	purpose,	we	only	take	into	account	students	that	have	
successfully	solved	a	particular	task.	We	can	then	preprocess	the	data	of	those	users	and	run	
a	clustering	algorithm	such	as	k-means	on	the	data.	We	might	identify	two	different	groups	
of	users	that	we	label	with	two	different	names.	We	then	add	this	information	to	the	users	
in	the	database	in	order	to	store	this	information	persistently.	

																																																								
22 https://aws.amazon.com/rds/

 D2.1,	V4.0

	

Page	33	

Such	computations	are	typically	more	computationally	challenging,	and	hence	more	Central	
Processing	Unit	(CPU)	and	Random	Access	Memory	(RAM)	intensive	so	that	a	different	layer	
is	used	in	the	cloud.	We	would	not	want	to	burden	an	instance	that	is	running	for	a	different	
purpose	 with	 this	 load,	 e.g.,	 a	 tracking	 instance.	 We	 therefore	 pick	 for	 such	 operations	
instances	 with	 multiple	 cores	 and	 higher	 amount	 of	 RAM	 but	 potentially	 lower	 I/O	
performance.	

The	process	of	feature	engineering	can	become	quite	time	consuming.	Sometimes	features,	
or	 entire	 sets	 of	 feature	 vectors,	 can	 be	 cached	 and	 used	 for	 different	 algorithms	 or	 for	
hyper-parameter	 optimization.	 In	 those	 cases,	 we	 can	 save	 time	 by	 not	 computing	 all	
features	repeatedly	but	instead	use	a	cached	version	of	the	data.	For	this	purpose	we	make	
a	copy	of	each	dataset	and	store	the	encrypted	data	on	S3	as	well.	If	such	a	cached	dataset	
exists	for	a	specific	deep	analytics	pipeline,	it	can	easily	be	downloaded	in	a	fraction	of	the	
time	that	is	needed	to	generate	the	data	from	scratch.	

 D2.1,	V4.0

	

Page	34	

7 Data	Access	

For	different	purposes,	data	needs	to	be	accessed	in	different	forms.	The	most	basic	form	is	
raw	 data	 access.	 Such	 an	 access	 returns	 the	 data	 in	 the	 very	 same	 form	 as	 it	 has	 been	
tracked	on	the	original	device.	I.e.,	it	does	not	contain	any	additional	information	and	is	not	
aggregated.	Without	further	processing,	this	form	of	data	has	limited	utility	-	in	particular	for	
teachers.		

Following	the	processing	layers	that	were	described	so	far,	the	next	option	is	to	return	data	
in	aggregated	form.	Shallow	analytics	dashboards	typically	show	such	information	on	an	app	
level.	For	example,	the	daily	active	users	of	the	past	days	or	the	average	time	for	solving	a	
particular	 task.	This	data	can	either	be	shown	 in	a	 separate	visualization	 tool,	e.g.,	a	web-
based	dashboard,	or,	as	proposed	in	section	3.4.5	in	deliverable	D1.2,	the	analytics	data	can	
be	shown	directly	in	a	distinct	frame	in	a	virtual	lab.	This	would	require	specific	endpoints	in	
the	 GIO	 infrastructure	 that	 return	 aggregated	 information	 providing	 value	 to	 different	
groups	of	users,	e.g.,	the	teachers	or	the	students.		

Lastly,	 it	 can	 also	 be	 interesting	 to	 access	 data	 on	 a	 user	 level	 with	 all	 its	metadata	 and	
inferred	data.	I.e.,	once	particular	users	of	interested	have	been	identified,	the	infrastructure	
should	allow	returning	all	of	 their	data.	Among	other	things,	 this	 includes	all	event	data	 in	
raw	form	of	that	particular	user,	its	calculated	sessions,	metadata,	and	predictions	from	the	
deep	analytics	part.	

To	realize	those	different	forms	of	data	access,	the	final	component	of	the	GIO	infrastructure	
is	an	HTTP-endpoint	that	provides	a	JSON-API.	As	it	will	be	described	in	the	examples	below,	
various	URLs	return	data	in	JSON-format	that	satisfy	different	needs.	To	realize	this	API,	the	
GIO	 infrastructure	 again	 makes	 use	 of	 an	 ELB	 with	 several	 EC2	 instances	 processing	 the	
different	 requests.	 Depending	 on	 the	 nature	 of	 the	 request,	 the	 API-instances	 query	 the	
different	 databases	 (DynamoDB	 and	 PostgreSQL)	 or	 the	 object	 storage	 S3.	 The	 API	 uses	
different	 authentication	mechanisms	 so	 that	 only	 authorized	 users	 can	 request	 data.	 The	
data	itself	is	returned	decrypted,	however,	by	using	an	SSL/TLS	connection,	GIO	makes	sure	
that	 nobody	 has	 access	 to	 the	 data	 during	 the	 transport	 to	 the	 end	 user.	 We	 will	 now	
describe	the	different	data	access	option	in	greater	detail.	

7.1	 Raw	Data	Access	
A	 first	 requirement	 for	 data	 access	was	 in	 form	of	 a	 raw	data	 access.	 The	 raw	data	helps	
each	consortium	member	to	get	a	better	understanding	of	the	data	and	provides	test	data	
for	initial	development.	This	data	can	also	be	used	to	start	with	an	initial	visualization.	

An	 example	 event	 was	 already	 given	 in	 Section	 4.	 The	 raw	 data	 access	 makes	 all	 events	
available	per	virtual	lab	per	day.	

The	API	needs	to	guarantee	that	only	authorized	users	have	access	to	the	data.	Therefore,	a	
user	has	to	authenticate	at	the	API	with	their	credentials.	The	credentials	are	in	form	of	the	
identifier	of	the	lab	and	a	master	key.	The	master	key	is	shared	in	a	securely	manner	among	
the	consortium	members	via	a	password	manager.	

 D2.1,	V4.0

	

Page	35	

Example:	the	simplest	approach	of	downloading	raw	data	is	by	using	a	system	tool	such	as	
“curl”.	Having	a	lab	identifier	and	a	master	key	at	hand,	the	data	can	be	downloaded	for	a	
particular	day	with	a	command	of	the	following	form:	

curl
 -H 'content-type: application/json'
 -H 'X-goedle-app-key: <LAB_ID>'
 -H 'X-goedle-master-key: <MASTER_KEY>'
 https://api.goedle.io/apps/<LAB_ID>/data/<YYYY>/<MM>/<DD>	

7.2	 Aggregated	Data	Access	
Depending	 on	 the	 requirements	 of	 the	 data	 visualization,	 one	 can	 imagine	 to	 also	 return	
aggregated	data	on	the	virtual	lab	level.	Shallow	analytics	may	require	direct	access	to	some	
aggregated	information	such	as	daily	active	users	or	retention	information.	However,	these	
endpoints	 will	 be	 developed	 as	 requested.	 Often	 this	 information	 can	 be	 accessed	 from	
elsewhere	and	the	 focus	here	 is	on	data	 that	helps	designing	and	adapting	 the	virtual	 lab.	
When	 these	 requirements	 arise,	 the	 development	 can	 be	 discussed	 and	 realized	 if	
manageable.	

7.3	 User	Level	Access	
When	 accessing	 the	 raw	 data,	 the	 data	 has	 to	 be	 further	 processed	 in	 order	 to	 obtain	
meaningful	information	for	a	teacher	or	a	virtual	lab	designer.	As	discussed	in	the	previous	
sections,	 the	 data	 aggregation,	 enrichment,	 and	 augmentation	 provides	 additional	
information.	 For	 this	 purpose,	 one	 can	 also	 query	 all	 available	 data	 that	 exists	 for	 an	
individual	user.	This	 includes,	but	is	not	limited	to,	session	information,	 locale	data	such	as	
language	and	country,	device	type,	and	of	course,	the	event	history	as	well.	Once	a	full	data	
augmentation	layer	is	in	place	that	augments	the	data	with	deep	analytics,	this	information	
can	also	be	accessed	per	user.	

Example:	Akin	to	the	previous	example,	one	can	again	make	use	of	system	utilities	such	as	
“curl”	 to	 access	 this	 data.	 It	 is	 again	 assumed	 that	 the	 user	 has	 a	 lab	 identifier	 and	 the	
corresponding	master	key	at	hand.	Additionally,	the	user	identifier	must	be	specified.	

curl
 -H 'content-type: application/json'
 -H 'X-goedle-app-key: <LAB_ID>'
 -H 'X-goedle-master-key: <MASTER_KEY>'
 https://api.goedle.io/apps/<LAB_ID>/users/<USER_ID>

Depending	on	the	scenario,	we	will	also	add	query	parameters	that	let	you	return	the	entire	
history	of	events	as	well.	

 D2.1,	V4.0

	

Page	36	

8 Extending	the	existing	infrastructure	for	ENVISAGE	

While	some	parts	of	the	infrastructure	and	data	collection	code	already	existed,	we	started	
to	extend	the	infrastructure	and	its	tracking	capabilities	explicitly	for	the	ENVISAGE	project.	

As	 seen	 in	 the	 Section	 2,	 many	 of	 the	 existing	 analytics	 and	 data	 tracking	 tools	 do	 not	
provide	the	necessary	functionalities	and	flexibilities	to	effectively	support	virtual	labs	as	we	
envision	 it.	 Based	 on	 these	 observations,	 we	 are	 currently	 extending	 all	 aspects	 of	 the	
platform	to	fit	well	into	the	ENVISAGE	scenario.	

Tracking	

We	 are	 extending	 the	 tracking	 code	 to	 provide	 specific	 functionalities	 to	 track	 groups	 of	
students	or	 classes.	 This	 includes,	 for	 example,	 asking	 students	 for	 an	 identifier,	 so	 that	 a	
student	returning	to	virtual	lab	several	days	later	again	be	identified.	Similarly,	an	identifier	
for	classes	or	schools	can	be	incorporated.	

However,	we	have	to	be	aware	of	more	strict	privacy	regulations	when	tracking	students	and	
underage	persons.	It	is	important,	that	we	do	not	start	collecting	any	personally	identifiable	
data.	Looking	at	the	identifier	above,	it	should	be	a	unique	identifier,	however,	the	identifier	
should	 not	 immediately	 allow	 a	 mapping	 to	 the	 student’s	 real	 name.	 Under	 certain	
circumstances,	 this	 can	 be	 desirable	 for	 a	 teacher.	Nevertheless,	 this	mapping	 should	 not	
exist	 on	 third-party	 infrastructure	 services,	 nor	be	used	 in	 any	other	way	or	 connected	 to	
commercial	 applications.	 This	 will	 become	 an	 issue	 as	 soon	 as	 we	 start	 categorizing	 and	
grouping	users	with	respect	to	the	metrics	raised	in	D1.2.	This	was	one	request	brought	up	
by	the	teachers	from	EA	and	needs	to	be	handled	in	accordance	with	privacy	laws.	

Many	 of	 the	 virtual	 lab	 scenarios	 are	 focused	 on	 a	 specific	 goal,	 i.e.,	 are	 compared	 to	
arbitrary	 apps	 much	 more	 goal	 oriented.	 We	 are	 currently	 extending	 our	 tracking	
infrastructure	 to	 provide	 specific	 support	 for	 such	 events	 and	 traits	 attached	 to	 it.	 For	
example,	it	should	be	possible	to	distinguish	intermediate	goals	and	final	goals.	

Aggregation		

When	adding	the	input	and	tracking	of	student	identifiers,	the	data	received	by	the	backend	
potentially	 requires	 deduplication.	 If	 students	 will	 be	 given	 the	 possibility	 to	 choose	 a	
username,	it	 is	often	desirable	to	align	the	events	tracked	before	the	login	with	the	events	
after	 the	actual	 login,	 so	 that	a	complete	picture	 is	available.	 I.e.,	when	students	 first	visit	
the	 virtual	 lab,	 they	have	a	different	 identifier,	 as	 they	have	not	 entered	a	username	yet.	
Once	 they	 login,	a	more	persistent	 identifier	can	be	attached	 to	 their	events	although	 the	
previous	events	belong	to	the	same	users	and	sessions.	

This	also	connects	to	the	privacy	 issues	mentioned	 in	the	previous	tracking	paragraph.	We	
have	 to	 find	an	anonymous	 identifier,	 that	 is	 capable	 to	be	used	over	 the	whole	 targeted	
educational	scenario,	which	potentially	 lasts	over	several	weeks,	and	still	preserves	privacy	
rights.	

Augmentation	

Only	very	few	analytics	tools	have	started	to	augment	user	data	with	predictions.	Typically,	
those	tools	do	not	grant	access	to	the	predictions	directly	but	allow	using	the	information	in	

 D2.1,	V4.0

	

Page	37	

subsequent	tasks.	For	example,	in	marketing	suites	for	e-commerce	applications,	marketers	
can	send	an	email	to	all	users	who	are	predicted	to	be	more	likely	to	have	a	purchase	in	the	
near	 future.	Here,	 the	 augmentation	of	 the	users	 is	 in	 form	of	 a	 probability	 or	 score	 that	
indicates	 the	 purchase	 likelihood.	 In	 the	 scope	 of	 the	 ENVISAGE	 project,	 we	will	 create	 a	
framework	 that	 generally	 allows	 to	 augment	 student	 data	 with	 predictions	 and	 other	
automatically	generated	traits	that	are	useful	for	learning	analytics	use	cases.		

The	algorithms	that	augment	data	can	either	run	directly	on	the	GIO	 infrastructure,	or	the	
API	 can	 be	 used	 to	 augment	 individual	 users	 based	 on	 external	 calculations.	 In	 the	 first	
setting,	the	source	code	of	the	algorithms	will	be	deployed	in	the	GIO	infrastructure,	i.e.,	the	
data	 augmentation	 layer,	 and	 the	 algorithms	 run	 in	 a	 regular	 fashion.	 For	 example,	 an	
algorithm	 clusters	 all	 students	 every	 day	 based	 on	 all	 available	 behavioral	 data	 and	
performance	 indicators.	 Here,	 one	 can	 for	 example	 analyze	 how	 certain	 task	 solving	 skills	
correlate	with	the	performance.		

In	 the	 latter	 case	where	 the	 algorithms	do	not	 directly	 run	on	 the	GIO	 infrastructure,	API	
endpoints	 will	 be	 created	 in	 such	 a	 way	 that	 external	 information	 is	 attached	 to	 existing	
users.	For	example,	by	providing	data	access	to	raw	data,	other	project	partners	may	apply	
algorithms	of	this	data	themselves	and	feed	the	results	back	into	the	GIO	infrastructure	so	
that	other	algorithms	can	make	use	of	 these	predictions	as	well.	 To	give	a	more	 concrete	
example,	one	can	think	of	a	setting	where	supervised	learning	algorithms	run	directly	on	the	
GIO	 infrastructure	 that	 predict	 which	 users	 will	 solve	 a	 particular	 task.	 Additionally,	 an	
external	algorithm	calculates	a	clustering	of	the	students	based	on	their	behavior	and	feeds	
the	 information	 back	 into	 the	 GIO	 infrastructure.	 The	 supervised	 learning	 algorithms	 can	
then	use	the	cluster	label	as	an	additional	feature.	For	the	visualization,	all	this	information	
can	then	be	returned	with	help	of	the	GIO	API	and	summarized	in	either	the	virtual	lab	itself	
or	in	the	authoring	tool.	

Access	

So	 far,	 the	 GIO	 API	 does	 not	 provide	 a	 lot	 of	 endpoints	 for	 data	 access	 and	 the	 API	 is	
primarily	used	to	feed	GIO’s	own	products	and	data	analysis.	Most	of	the	endpoints	are	not	
yet	 tailored	 to	 work	 with	 virtual	 labs	 or	 the	 authoring	 tool	 but	 they	 will	 be	 adapted	
accordingly,	 so	 that	 the	 desired	 information	 is	 made	 available	 to	 those	 parts	 of	 the	
workflow.	This	will	 in	particular	focus	on	supporting	the	needs	of	learning	analytics	specific	
use	cases.	When	looking	at	many	other	available	tools	on	today’s	analytics	market,	such	data	
access	in	different	forms	is	not	be	possible.	This	holds	in	particular	if	the	raw	data	is	enriched	
and	augmented	as	described	in	the	previous	sections.	

To	 start	 with	 the	 first	 analysis	 and	 development	 of	 algorithms,	 we	 have	 added	 an	 API-
endpoint	for	raw	data	access	as	described	in	the	previous	section.	This	API-endpoint	is	made	
available	exclusively	to	the	ENVISAGE	partners	and	GIO	does	currently	not	plan	to	make	such	
functionality	available	to	all	customers	due	to	the	reasons	described	above.	This	policy	might	
change	in	the	future	if	the	demand	increases	from	tech-savvy	customers.	

We	 are	 currently	 working	 on	 API-endpoints	 that	 return	 user	 data	 and	 their	 events	 as	
sketched	in	the	previous	section.	For	the	moment,	this	will	omit	the	augmentation	based	on	
deep	analytics	as	this	is	still	work	in	progress.	However,	once	the	consortium	has	developed	
the	 algorithms	 and	 technology,	 the	 endpoints	 will	 be	 adapted	 and	 extended	 accordingly.	

 D2.1,	V4.0

	

Page	38	

This	can	also	lead	to	additional	endpoints	that	return	data	of	entire	groups	of	students.	For	
example,	all	students	having	a	particular	cluster	label.	

Depending	on	the	needs	of	the	shallow	analytics	visualization,	we	will	also	provide	additional	
endpoints	that	return	aggregated	data.	This	can	include	but	is	not	limited	to	simple	counts	
and	statistics	such	as	daily	active	users	or	monthly	active	users,	retention	matrices,	or	similar	
metrics	that	can	also	be	found	in	today’s	state-of-the-art	analytics	products.		

 D2.1,	V4.0

	

Page	39	

9 Statistics	on	Tracked	Data	

For	a	first	overview	of	the	tracked	data	we	provide	descriptive	information	about	the	data.	
From	 December	 30th	 to	 March	 13th	 we	 observed	 92	 users.	 These	 users	 had	 about	 178	
sessions.		

	
Figure	9.1	Overall	sessions	for	the	tracked	Wind	Energy	Lab	users

	

To	dive	deeper	into	the	tracked	data,	we	will	focus	on	days	where	more	than	five	sessions	
were	measured.	The	following	evaluations	were	done	on	the	dates	in	Table	9.1.	To	get	a	first	
understanding	how	the	lab	is	used,	the	Table	9.1	shows	the	days	which	had	more	than	five	
sessions.	

Table	9.1	Days	with	high	usage	

Date	 Session	Count	

2017-03-01	 17	

2017-01-24	 12	

2017-01-11	 10	

2017-01-26	 10	

2017-01-18	 8	

2017-01-23	 8	

2017-02-28	 7	

2017-01-19	 6	

We	found	eight	users	which	were	seen	on	one	of	these	particular	days	and	also	returned	on	
another	 of	 these	 days.	 Only	 two	 users	 returned	 more	 than	 two	 times.	 At	 this	 point,	 we	
assume	 that	 the	 returning	users	are	 specific	devices	which	are	used	 for	 the	“Wind	Energy	
Lab”.		

	

 D2.1,	V4.0

	

Page	40	

A	first	hint	about	the	usage	is	the	occurrences	of	the	used	events	in	Table	9.2.	

Table	9.2	Event	occurrences	
Event	Count	 Event	

393	 view.configuration	

289	 view.show_power_output_report	

148	 view.show_values_for_current_hour	

137	 add.turbine	

116	 start.simulation	

89	 click.simulation_speed	

81	 launch	

65	 view.instructions	

60	 view.show_pie_charts	

57	 remove.turbine	

24	 view.home	

23	 reset.simulation	

19	 pause.simulation	

One	 can	 see	 that	 there	 are	 only	 a	 few	 events	which	 are	 used	 frequently.	 If	 we	 take	 into	
account	that	the	launch	event	occurs	only	once	per	session,	the	events	with	a	higher	count	
than	launch	are	events	of	the	“Wind	Energy	Lab”	which	are	needed	to	solve	the	lab.	

In	 order	 to	 extract	 information	 for	 additional	 deep	 analytics	 and	 showing	 the	 practical	
implementation	of	 the	metrics	 in	D1.2,	we	 introduce	the	graph	 in	Figure	9.2.	This	graph	 is	
depending	on	user	sessions	and	the	overall	connection	of	events	fired	by	users.	The	graph	
shows	 the	 connections	 for	 subsequent	 events	 in	 time	 grouped	 by	 users.	 The	 result	 is	 the	
connection	between	all	events	for	all	users	in	the	“Wind	Energy	Lab”.	The	nodes	of	the	graph	
are	 events,	 while	 the	 numbers	 on	 the	 edges	 count	 the	 frequency	 of	 transitions.	 The	
thickness	of	the	edges	is	relative	to	these	counts.	

To	visualize	this	information,	we	used	the	force	atlas	2	algorithm	to	arrange	the	nodes	in	the	
graph.	 A	 very	 interesting	 side	 effect	 is	 the	 closeness	 of	 nodes	 that	 represents	 the	
interactions	 of	 the	 users.	 It	 can	 be	 seen	 that	 the	 “simulation	 event”	 nodes	 are	 well	
connected	and	arranged	nearby.	The	same	can	be	seen	for	 the	“report	event”	nodes.	This	
graphs	 shows	 that	 travel-path	 related	 metrics	 are	 possible	 even	 with	 simple	 transitions.	
Although	not	 yet	 shown	here,	 the	 tracked	data	 can	also	be	used	 for	 time-related	metrics.	
However,	 metrics	 such	 as	 time-on-task	 or	 time-to-completion	 require	 additional	 tracking	
points.	

 D2.1,	V4.0

	

Page	41	

	
Figure	9.2	Transition	graph

Other	metrics	 also	 suggested	 a	 grouping	 or	 categorization	 of	 users.	 For	 this	 purpose,	 we	
have	had	a	closer	look	the	IP	addresses	of	the	users.	We	were	able	to	identify	four	central	IP	
addresses	whose	source	was	 in	Greece.	The	main	traffic	came	from	EA	 in	Athens.	Another	
source	of	 traffic	was	CERTH	(Thessaloniki),	where	the	 lab	was	tested	by	other	members	of	
the	consortium.	This	information	was	actually	confirmed	during	the	second	project	meeting	
in	Athens	(March	9th-10th).	We	were	also	able	to	resolve	the	following	cities	in	Table	9.3.	This	
table	shows	the	top	five	producers	of	events:	

Table	9.3	Geo	locations	of	tracked	events	

Event	Count	 Country	 Region	 City	

924	 Greece	 Attiki	 Athens	

168	 Greece	 Attiki	 Marousi	

94	 Greece	 Attiki	 Marousi	

39	 Greece	 Attiki	 Athens	

39	 Greece	 Thessaloniki	 Thessaloniki	

 D2.1,	V4.0

	

Page	42	

This	 data	 showed	 that	 the	 tracking	 and	 the	 integration	 is	working	properly.	 The	data	was	
accessed	via	the	JSON-API	which	is	described	in	Section	7.		

