

ENhance VIrtual learning Spaces using Applied Gaming in Education

H2020-ICT-24-2016

D1.2 - Data structure and functional requirements

Dissemination level:	Public (PU)		
Contractual date of delivery:	Month 3, December 31 st , 2017		
Actual date of delivery:	Month 6, March 3 rd , 2017		
Workpackage:	WP1 - Educational scenarios and requirements for virtual learning		
	spaces		
Task:	T1.2 - Data structure requirements for learning analytics		
Туре:	Report		
Approval Status:	Final		
Version:	5		
Number of pages:	31		
Filename:	D1.2_DataStructureFunctionalRequirements_Final_v5.0.pdf		

Abstract

The current document first presents a general compilation of behavioural data collected from virtual learning labs in the framework of the Go-Lab project and their analysis. The comprehensive analysis of the available data provided several deeper qualitative and quantitative understandings of the user behaviour. The experience gathered from the analyses of the available data is directly transferred to the ENVISAGE project in order to guarantee that more effective, thorough and comprehensive metrics will be implemented to collect the behaviour of each user, teacher or student, during the usage of a virtual lab in science teaching and learning. In this context we discuss and propose a list of main metrics that can be collected by the analytics service, their definition and rationale of use. We also propose that the structure of the analytics data and its aggregation level to permit analysis and interpretation similar to the one that is conventionally done in the actual school environment. We also discuss the functional requirements that the virtual lab authoring environment of ENVISAGE should accommodate. These are presented mainly from an enduser perspective being a science teacher. Finally we give a short overview to describe some basic functionalities and use cases of the Go-Lab system in the framework of which we obtained the raw log data of user actions in its authoring environment. This dataset is now available to partners of ENVISAGE for study and analysis. The description of its content is given to help the application of machine learning algorithms and practices for extracting baseline and deeper information on how the environment was utilized.

The information in this document reflects only the author's views and the European Community is not liable for any use that may be made of the information contained therein. The information in this document is provided as is and no guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

Co-funded by the European Union

Acknowledgment

This work is part of project ENVISAGE that has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 731900.

Copyright

© Copyright 2017 ENVISAGE Consortium consisting of:

- 1. ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS (CERTH)
- 2. UNIVERSITA TA MALTA (UOM)
- 3. AALBORG UNIVERSITET (AAU)
- 4. GOEDLE IO GMBH (GIO)
- 5. ELLINOGERMANIKI AGOGI SCHOLI PANAGEA SAVVA AE (EA)

This document may not be copied, reproduced, or modified in whole or in part for any purpose without written permission from the ENVISAGE Consortium. In addition to such written permission to copy, reproduce, or modify this document in whole or part, an acknowledgement of the authors of the document and all applicable portions of the copyright notice must be clearly referenced.

All rights reserved.

History

Version	Date	Reason	Revised by
1 (alpha)	10/01/2017	Initial Version Table of Contents	Georgios Mavromanolakis and Spiros Nikolopoulos
2 (beta)	17/02/2017	Beta version incorporating most of the envisaged content	Georgios Mavromanolakis, Pavlos Koulouris
3	21/02/2017	Version of the document annotated with comments/suggestions made in internal review	Giannis Chantas
4	24/02/2017	Amended version addressing the comments made by the internal review	Georgios Mavromanolakis, Pavlors Koulouris and Sofoklis Sotiriou
5(final)	28/02/2017	Final proof reading by the coordinator	Spiros Nikolopoulos

Author list

Organization Name		Contact Information	
EA	Georgios Mavromanolakis	gmavroma@ea.gr	
EA	Pavlos Koulouris	pkoulouris@ea.gr	
EA	Sofoklis Sotiriou	sotiriou@ea.gr	
CERTH	Giannis Chantas	gchantas@iti.gr	
CERTH	Spiros Nikolopoulos	nikolopo@iti.gr	

Executive Summary

The current document first presents a general compilation of behavioural data collected from virtual learning labs in the framework of the Go-Lab project and their analysis. The comprehensive analysis of the available data provided several deeper qualitative and quantitative understandings of the user behaviour, such as its development and evolution through time and across countries, on how and to what extent users utilized the offered services, whether they followed the proposed educational framework, etc. The experience gathered from the analyses of the available data is directly transferred to the ENVISAGE project in order to guarantee that more effective, thorough and comprehensive metrics will be implemented to collect the behaviour of each user, teacher or student, during the usage of a virtual lab in science teaching and learning.

In this context we discuss and propose a list of main metrics that can be collected by the analytics service, their definition and rationale of use. We also propose that the structure of the analytics data and its aggregation level to permit analysis and interpretation similar to the one that is conventionally done in the actual school environment. By following similar structure and interrelations and by providing visualization at similar aggregation we believe that the task of its interpretation by the teachers will be greatly facilitated.

We also discuss the functional requirements that the virtual lab authoring environment of ENVISAGE should accommodate. These are presented mainly from an end-user perspective being a science teacher. Finally we give a short overview to describe some basic functionalities and use cases of the Go-Lab system in the framework of which we obtained the raw log data of user actions in its authoring environment. This dataset is now available to partners of ENVISAGE for study and analysis. The description of its content is given to help the application of machine learning algorithms and practices for extracting baseline and deeper information on how the environment was utilized.

The document is structured as follows: a short introduction is given in Chapter 1. In Chapter 2 we are presenting the behavioural data collected from the Go-Lab virtual learning labs and environments, its analysis and concluded remarks. In Chapter 3 we are proposing and discussing the functional requirements that should be implemented in the design of the authoring environment and that will allow the development and realization of the shallow and deep analytics services and related metrics. In Chapter 4 we provide the description of the telemetry raw data that was collected in the framework of the Go-Lab project and that are now available for analysis by the partners of the consortium. The document is summarized in Chapter 5.

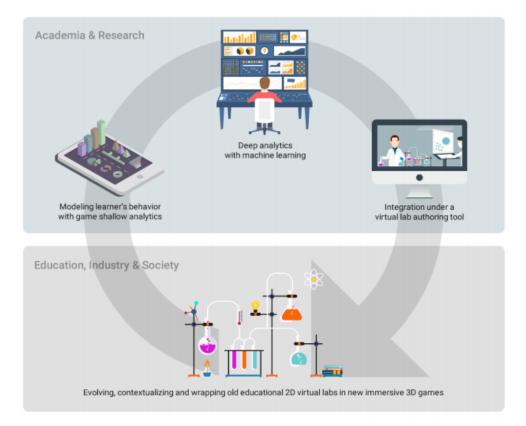
Abbreviations and Acronyms

ILS	Inquiry Learning Space
ICT	Information and Communication Technologies
GUI	Graphical User Interface
WYSIWYG	What You See Is What You Get
URL	Uniform Resource Locator

Table of Contents

1	INTRODUCTION	9
1.1	The ENVISAGE Concept	9
1.2	Scope of the current document	10
2	BEHAVIOURAL DATA COLLECTED FROM VIRTUAL LEARNING LABS	11
2.1	Analysis of usage from system data	11
2.2	1.1 Time evolution of usage	11
2.2	1.2 Usage of inquiry learning spaces	13
2.2	User groups, their perspectives and main findings	15
3	METRICS, DATA STRUCTURE AND FUNCTIONAL REQUIREMENTS	17
3.1	Introduction	17
3.2	List of proposed metrics for ENVISAGE	17
3.2	2.1 Time-on-task	17
3.2	2.2 Time-to-completion	17
3.2	2.3 Class categorisation profile	18
3.2	2.4 Levels of proficiency	18
3.2	2.5 Mastery index	19
3.2	2.6 Travel Path Levels of Proficiency	19
3.3	Data structure and aggregation level	20
3.4	Functional requirements	22
3.4	4.1 User interface	22
3.4	4.2 Authoring environment with multiple display frames	22
3.4	4.3 Display frame	23
3.4	4.4 Virtual 3D lab application	24
3.4	4.5 Analytics and visualization services	25
3.4	4.6 An educational activity as a top level container object	25
4	TELEMETRY DATASET	26
4.1	General overview	26
4.2	Description of content	28

5 SUMMARY


6 **REFERENCES** 31

1 Introduction

1.1 The ENVISAGE Concept

The overall concept of ENVISAGE is based on iterating the process of improving virtual labs through a structured and well-defined process. The first phase starts from the current available version of a lab that may be already in use in real classroom setting and the collection of preliminary shallow analytics extracted from user behavioural data. The next step is to dig deeper into the obtained analytics using machine learning methods. Then, it follows the integration of the concluded information and pedagogical insights into the authoring tool which will be employed by teachers and educators to build an improved version of the virtual lab and accompanying educational scenarios. The above process can be iterated until the final version is reached. The whole approach of ENVISAGE is illustrated in Figure 1.1. First simple statistics on tracked data (shallow analytics) are collected to monitor the activity of the users, both teachers and learners, in order to model their current behaviour and general practices. Further analysis with the application of machine learning methods follows in order to reliably predict the expected behaviour of the users. Both of these approaches are combined with visualization methodologies that will offer insights to educators and to lab developers on what features are important and what functionalities users expect to find in a virtual lab. These insights will allow the optimization of the design of the virtual lab, will facilitate its implementation and finally achieve the enhancement of the learning process.

Figure 1.1: The ENVISAGE virtual lab enrichment strategy through a staged iterative approach.

Page 9

1.2 Scope of the current document

The current document aims to present a compilation of behavioural data collected from virtual learning labs and their analysis, to discuss and propose a list of metrics, its basic structure and the functional requirements of the authoring environment of ENVISAGE. Their incorporation in the design of the interfaces and the offered services will enable the implementation of the aforementioned approach of the ENVISAGE project. The document is structured as follows: in Chapter 2 we are presenting the behavioural data collected from the Go-Lab virtual learning labs and environments, their analysis and concluded remarks. In Chapter 3 we are proposing and discussing the list of metrics and the functional requirements that should be implemented in the design of the authoring environment and that will allow the development and realization of the shallow and deep analytics services and related visualization tools. In Chapter 4 we provide a description of the telemetry raw data that was collected in the framework of the Go-Lab project and that are now available for analysis by the partners of the consortium. The main points of the document are summarized in Chapter 5.

2 Behavioural data collected from virtual learning labs

In the framework of the work done in the Go-Lab project (http://golabz.eu) EA was responsible in performing analysis of the collected user data [1]. The primary aim of the analysis task was, on one hand, to monitor the large-scale implementation pilot activities and, on the other, to provide objective proof of extensive usage and sustainable uptake of both the educational approach and the online offered services of the project. In addition to that, the comprehensive analysis of the available data provided several deeper qualitative and quantitative understandings of the user behaviour, such as its development and evolution through time and across countries, on how and to what extent users utilized the offered services, whether they followed the proposed educational framework, etc. It should be noted that in the project's scope there was no goal to provide individual learning analytics although an analytics engine was partially integrated in the authoring environment. Nevertheless, the experience gathered from the analysis of the available data will be transferred to the ENVISAGE project in order to guarantee that more effective, thorough and comprehensive metrics will be implemented to collect the behaviour of each user, teacher or student, during the usage of a virtual lab in science teaching and learning. In the following we discuss the main findings of the analysis of the data of the Go-Lab system [2].

2.1 Analysis of usage from system data

2.1.1 Time evolution of usage

The system raw log data and their thorough analysis offered an independent and objective way to study the actual usage of the system, its main characteristics, how and when online Inquiring Learning Spaces (ILS) were created, authored and implemented, how the overall population of users evolved in time, etc. In this context, our analysis shows that, from Oct 2014, and since the migration to a new and more user friendly system and authoring environment, until the end of Jul 2016, 6517 new users registered and created an account in the authoring environment, of whom 3877 became creators and authors of 1470 ILSs as counted with minimum quality criteria (e.g., ILSs with all inquiry phases according to the proposed Go-Lab inquiry cycle, with at least five standalone student views, etc.). These figures show a more than 100% increase when counted from Oct 2016, as can be seen in Fig. 2.1. When compared to the total number of teachers participated in the partner trainings, we see that we reached a multiplication factor of 3.85 with respect to the number of registered users per trainee, and 2.29 with respect to the number of content authors per trainee. This reflects the fact that more experienced and advanced teachers were training and tutoring their less experienced colleagues, which is in line with what national coordinators and partners had observed during their interactions with participants at the various training workshops offered in that period of time.

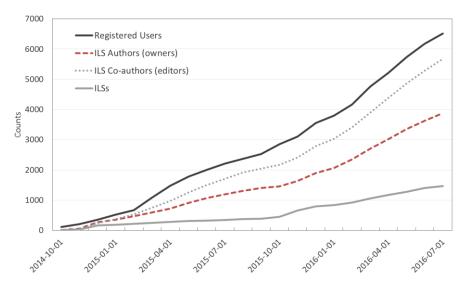


Figure 2.1: Time evolution of registered users, authors and editors, and ILSs created in the authoring environment.

Figure 2.2 shows more qualitative parameters and how they evolved through time for the last two in-school large-scale pilot implementation phases. We observed that the number of registered users that correspond to an author of inquiry content quickly improved since the start of trainings from Oct 2014, and stabilized to an average value of 1.68. This means that on average about 2 out of 3 users actively used the authoring environment and the offered tools to adapt or create their own ILSs. In the same figure, the curve of authors per ILS shows a more seasonal behaviour, which coincides with the periods that schools and teachers are in duty. It had a variation between about 2 and 4, with an overall average value of 2.64. This reflects the fact that teachers were gradually and actually sharing content with 2 or more other users or/and worked collaboratively with colleagues in the design and development of their ILSs.

In addition to above, a more significant qualitative change in the behaviour of users and how the system was utilized in practice is shown with the curve "standalone viewers per author". The term standalone viewer refers technically to the action of viewing an ILS by students that access it with nicknames or passwords given by their teacher. As can be seen there was a clear and distinctive rise after summer 2015 and since the start of the corresponding school year that spanned the last implementation phase. This constant increase shows clearly that progressively more and more teachers are utilizing their ILSs with their students. At the end of the phase it reached the value of 9.4. Taking into account that on average a typical school classroom consists of 20 to 25 students this means that on average about 2 students are sharing a PC to login and access the ILS taught. This is consistent with observations from national coordinators and partners and in particular from those who organized and implemented themselves activities with students in school classroom settings. The summative reported numbers for the activities that conducted by partners are 4283 students from 218 schools, which corresponds to an average of 19.6 actual students per classroom.

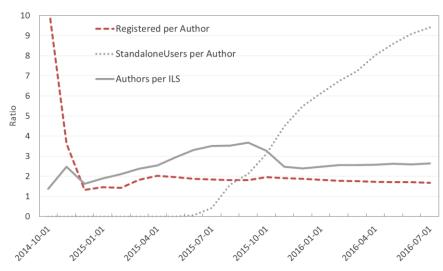
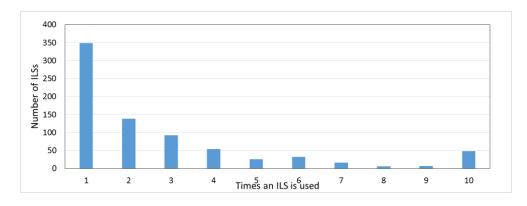


Figure 2.2: Time evolution of the number of registered users per author, standalone viewers and authors per ILS.


The abovementioned quantitative and qualitative change in the behaviour of users and the overall achieved usage of the system is a combination of several factors, among others: 1. maturity and proficiency of users; 2. consequent creation of a significant critical mass of teachers who produced in abundance a large variety of high quality ILSs in various languages, subjects and complexity levels; 3. abundance and variety of online labs and supportive apps in the portal; 4. technical improvements that made the system and the authoring environment more user-friendly.

2.1.2 Usage of inquiry learning spaces

The system log data gives us also the opportunity to analyse and estimate the overall usage of ILSs, time duration, repetition rate, etc. The analysis was based on 768 ILSs that passed a set of strict quality criteria (e.g., threshold value of standalone viewers of more than 10, usage of all phases of inquiry, minimum time of ILS usage of at least 15 mins) that were applied to the raw database.

The distribution of the selected ILSs as a function of how many times they were used (in settings of at least 10 standalone viewers, which correspond to 10 connected PCs or equivalently to at least 20 students) is shown in Fig. 2.3. We observe that the ILSs are implemented with on average about 50% of cases are a single time, about 30% are 2-3 times, about 11% are 4-6 times, about 8% are more than 7 times. On average, this corresponds to a mean repetition rate of 2.8 times that an ILS is implemented. In total, these ILSs were implemented with 21420 standalone viewers which roughly correspond to more than 40000 actual students. It should be noted that these estimates are on the conservative side if we take into consideration the fact that in many instances school classrooms were equipped with less PCs or equivalently had a higher ratio of students per connected PC.

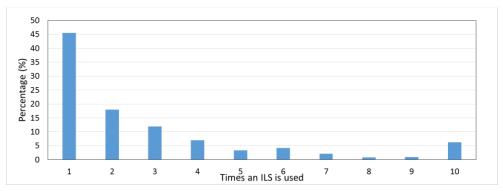


Figure 2.3: (Top) Number of ILSs versus how many times were used in classroom settings of at least 10 PCs which correspond to about 20 actual students. (Bottom) Percentage of ILSs versus how many times were used. (Note: last bin refers to values more than 10)

The results of the analysis of data with respect to duration of usage of an ILS is shown in Fig. 2.4 below. As can be seen from the upper curve overall in about 60% of the cases the duration of usage of an ILS is for about 43 mins. The long tail is understood due to cases where an ILS is partially implemented during classroom hours and then its usage were continued by students as homework, or for added assignments or in extra-curriculum activities. If one considers only in-school hours, typically from 8:00 until 15:00, then about 44% of the cases fall in this category as shown in the lower curve of the graph. This is well consistent with data from surveys of teachers about how they used Go-Lab services. It should be also noted that both curves are reproduced by power law distribution functions with long tail. This is typically expected to describe a dynamic system of large size of, e.g., physical, biological or social nature.

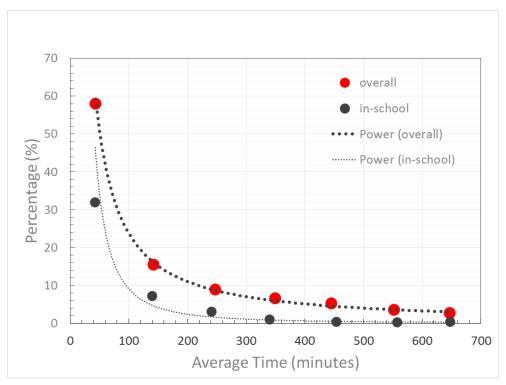


Figure 2.4: Distribution of average duration time an ILS is implemented.

2.2 User groups, their perspectives and main findings

Virtual lab developers, teacher trainers, science curriculum designers and advisors: The design of a virtual learning environment, an online lab for science education and its successful and effective incorporation in the school curriculum is usually a very complex procedure that can be affected by several factors. A well-designed, user-friendly and functional authoring environment can facilitate greatly the achievement of the educational and learning goals that a teacher or educator sets. However, as different types of users or stakeholders might have different expectations from the same environment and its offered functionalities or their importance in the learning process, there is usually a significant difference between the opinions and expectations of teachers, i.e., actual authoring users, and the view of lab developers or instructors on what is a good and effective virtual lab for real in-classroom usage. In the framework of the Go-Lab project, this difference or gap was minimized through extensive workshops during the design process, the so-called visionary and participatory design workshops and seminars, where the end-users' experience, professional insight and intuition was collected. This was then transferred in iterations in the overall enhancement of the authoring environment which greatly facilitated the uptake of its usage. Accompanied by thorough teacher trainings across countries, a widespread significant change of the behaviour of teachers was observed and achieved. From using occasionally the system but not implementing it in their classrooms, teachers progressively utilized its full services and became independent creators of online inquiry educational content of high quality. This behavioural change is captured in the analysis of the system data as discussed in the previous section which offered an objective proof of the effectiveness and impact of the followed strategy. In the framework of ENVISAGE, a similar approach is followed to guarantee its success from an early stage. Teachers are involved in the decision making

process regarding the design of several aspects of a lab and the authoring environment as early as possible and will provide designers with a means to have a more effective development cycle in terms of time and cost and more smooth in terms of realized educational objectives.

Authoring end-users, teachers, educators: We distinguish teachers and in general educators between: users of already made educational content and developers or creators of authentic educational material. The majority of them initially are in the former group and progressively as they gather experience and confidence they move into the latter. This evolution was also gathered in the system data discussed above. Furthermore, as they mature and become content creators, they are changing perspective and they utilize more regularly learning analytics functionalities that are integrated in the system. In general, from the perspective of a teacher, student behaviour metrics monitored in a constant basis provide insights directly into their knowledge cycle and facilitate their assessment. Offering these services in a user-friendly, easily accessible way with abundance of semi-automatic built–in visualization options will reinforce the flexibility of teachers to quickly adopt and adapt their teaching methodology according to their students' needs and skills at individual basis.

End-users, students, learners: One of the main drawbacks of the design of the Go-Lab log system was that it did not offer the possibility to monitor and track end-users at individual student level. As a consequence the offered learning analytics services was not used by teachers as they contained no real useful information to improve their teaching practice and practically had no value apart from showing basic statistical information. In addition, it did not offered any opportunity to implement and monitor students' competency levels, problem-solving skills, etc. ENVISAGE clearly has a different approach by providing student metrics that will allow the constant monitoring and tracking of the student behaviour, needs and difficulties during the learning process in the virtual environment. This will greatly help teachers to quickly profile their classroom audience and personalize their teaching approach. At this point it should be emphasized the importance that personalization features should not only be part of the analytics functionalities but also of the authoring environment. Features of the authoring and end-delivery environment, such as easy or personalized change of font size, font style, colour schemes, etc., can be crucial for how a virtual lab is perceived by students of different age or gender. Furthermore the inclusion of visualization of progress or achieved results at student level or student groups will also facilitate student self-assessment, self-paced learning and teaching methodologies that put emphasis in collaboration and work in groups.

3 Metrics, data structure and functional requirements

3.1 Introduction

In this chapter, we are presenting and discussing the data structure, aggregation level and related metrics that could be provided from the ENVISAGE service. We first present and propose a list of metrics, their definition and rationale of use. We then continue with a proposal regarding the main data structures and their interrelations, and the functional requirements of the authoring environment. Where appropriate, we briefly discuss a scenario of use or scenario of expected analysis in order to better justify their importance and clarify the context with respect to different user perspectives.

3.2 List of proposed metrics for ENVISAGE

In this section, we are presenting a list of metrics that can be collected by the analytics service. Some of them were already mentioned in detail in D1.1 along with examples from actual implementations in the scope of other projects. The reader is encouraged to read also this particular section of D1.1 for completeness.

3.2.1 Time-on-task

Definition: Time-on-task is defined as the total time that students spend engaging in a task that is related to outcome measures of learning or achievement [3]. In a lesson plan or educational activity that follows a structured inquiry-based model the time-on-task refers to the time that is spent within the specific phase of the inquiry activity. Based on the time-on-task paradigm, which is a simple but powerful framework to explain students` achievements, it may be possible to draw conclusions about the effectiveness of the ENVISAGE approach. However, this paradigm does not only represent the time students spent on learning, but it also represents an academic commitment [4]. The students show academic behaviour, they observe phenomena, draw conclusions, write reports or reflect on scientific questions.

Challenge: The time-on-task is more meaningful and valuable reference metric when the learning activity follows a staged approach or a linear sequence of predefined tasks. In cases where the learning activity has a circular structure or is done with iteration of some tasks, it may give misleading results. In such cases, the user should be notified about its usage. It should be also noted that this metric can be defined at student level as baseline reference data but it will also be useful to be available for analysis and visualization at group or class level. This will facilitate class profiling, class-to-class comparison analysis, etc.

3.2.2 Time-to-completion

Definition: This metric is similar to the time-on-task metric, the main difference is that the emphasis is on measuring the overall time students spent from a starting point until they complete the whole sequence of tasks that compose the learning activity. In this respect, it is more useful reference metric in case of circular activities or where students are assigned with tasks that can be repeated several times until a satisfactory outcome is reached. It offers also valuable information of the learning behaviour of students in case of homework assignments. In this case it is useful for teachers to monitor and know whether their

students do their work in one step or in multiple steps or iterations.

3.2.3 Class categorisation profile

Definition: In this metric, students are categorised in three categories according to a welldefined categorisation scheme, e.g., PISA 2012 (see [5-8]). The metric is calculated by considering the lowest level task per phase for the completed task. For example, students in the context of an educational activity have to solve two specific tasks that are connected with the specific partial ability. If a student completes successfully the two assigned tasks, he/she gets on a high level. In case the student is not able to solve neither of the tasks, then his/her profile value will be on the low level in that phase. However, if the student's answers were high or moderate, then his/her profile value will be moderate. By this procedure the specific study underestimates the real performance but such a process will minimize the risk for interpretations when comparisons are included.

Challenge: On an empirical perspective, the problem-solving questions should be designed in a way that only 10% of the students answer on a high level, 45% on a moderate level and 45% on a low level. We can claim, in such a case, that the specific approach is supporting students to develop from the moderate level to the high, but clearly the tools and the approaches used cannot have significant impact to low performers.

3.2.4 Perceived, expected and actual general class or group profiles

Definition: In this metric, students are asked to assess themselves or their groupmates according to a categorisation scheme provided by their teacher. The metric can be calculated either at task per task level or once for the whole activity. The expected profile is measured by the students' answers before the learning activity or task is done. The perceived profile is the one after the activity or task is completed. These profiles are then compared with a more objective metric obtained by measuring the actual performance results. By comparing perceived and actual performance or opinions, students are motivated to improve their learning and develop further skills and competences related to communication, collaboration, presentation tasks, etc.

Challenge: This method of profiling a class or group is more meaningful and valuable when the learning activity is performed by students in groups or when the collaborative aspect is important in the learning process. Otherwise, it may be significantly misinterpreted by students and lead to opposite results in terms of motivation, engagement, self-esteem, confidence or self-respect. In this context, it may also lead to results that underline certain gender-related stereotypes [9].

3.2.5 Levels of proficiency

Definition: This metric could offer an opportunity to teachers for direct comparisons with country average or other standardized scores, e.g., OECD average scores [5-7]. Additionally, the continuous use of such assessments from the teachers for the same class could act as a very effective method to monitor students' skills development. The level of each task is added for every problem-solving question in each phase of the inquiry activity and is then divided by the number of tasks. This method is offering the opportunity to have a clear view of the students' performance as there is no need to select among the task level when the

student performance is not the same in the task of each phase. Then the percentage is calculated. The example of the average of high, moderate and low levels of proficiency calculation are compared with OECD Average or other reference data. The findings can demonstrate whether the use of the virtual lab has helped students to outperform OECD average or other standard level.

Challenge: As in the case of the class categorisation profile mentioned above, here, the proper design of the problem-solving questions plays the most crucial role.

3.2.6 Mastery index

Definition: This metric could offer pedagogical insight and guidance to teachers to better profile their students in learning activities in which he/she did not set any explicit time constrain for them to complete them or in which students have ample time to work on them. However, there is a threshold learning goal which should be reached or overpassed in the end in order for a task or activity to be considered completed. The index is defined as the normalized ratio of the shortest time in class or sample of students spent to reach the threshold over the time spent by the student. A student who acquired content or/and concept knowledge more quickly is expected to get a higher index value. In other words, it measures the rate of learning and mastering a new subject. It may stay constant or increase/decrease as the student progresses into more complex learning tasks or concepts.

Challenge: Most educational systems across levels and countries are still exams-oriented. Teachers are challenged to teach certain curriculum subjects within fixed school times which is one of the main constraints. In this model, students are asked to proceed and to learn new subjects even without mastering the previous ones at adequate level. In this way, they only widen their knowledge gaps that may possibly have as time goes on. However, the advancements in ICT technologies and related services, their ubiquity and ease of access give numerous opportunities for new channels and models of teaching and learning to be implemented and utilized at large scale. Practices like distance-learning or asynchronous or self-paced personalized learning are widespread and their uptake is emphasizing the importance of mastery-oriented model of practice [10].

3.2.7 Travel-path related metrics

Definition: The travel-path is defined as the sequence of actions that a student follows within a learning activity. Metrics related to that can be the overall length in time, critical path to completion, loop time, transition density, etc. The measurement and monitoring of such metrics are more important in learning activities which are action-oriented rather than results-oriented. This is the case in inquiry based education methodologies in which students go through inquiry phases that in a sense simulate the scientific method of investigating phenomena and acquiring knowledge. In these methodologies, the focus is on students to understand and master the process rather than to reach certain results per se [11, 12]. In this context, the visualization of travel-path related metrics will help teachers to identify students that have difficulties or cases of possible disorientation where intervention and guidance is needed.

Challenge: Proper visualization is of high importance to facilitate correct interpretation of these metrics.

3.3 Data structure and aggregation level

We propose the structure of the analytics data and its aggregation level to permit analysis and interpretation similar to the one that is conventionally done in the actual school environment. In this context, the overall structure will resemble the one that is depicted in Fig 3.1. In this view, the school entity is composed of teachers. A teacher can develop several learning activities using virtual labs which then are implemented in the teaching of his/her classes. Each class is composed of students or group of students. For each student a record of progress is kept. By following similar structure and interrelations and by providing visualization of the collected analytics with similar aggregation we believe that the task of its interpretation by the teachers will be greatly facilitated. This will lead them to utilize the offered analytics services to further extent and take full advantage of them for guidance in their teaching and for improvement of the expected learning results for their students.

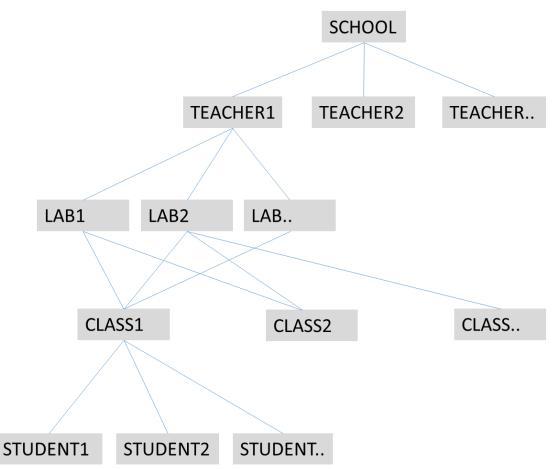


Figure 3.1: Data aggregation levels and interrelations resembling the structure of a real school

In the following, we list a set of questions or actual use scenarios to which the analytics and visualization services may provide straightforward answers even at real-time. The list is based on compilation of interviews and discussions during the school year 2016-2017, with teachers of primary and secondary education in EA and elsewhere who have utilized virtual labs in their teaching or have basic experience in online learning management systems and

related analytics services.

- A teacher would like to visualize in real-time the progress of its class in terms of percentage of tasks completed and intervene accordingly.
- A teacher would like to assess and compare progress in using a virtual lab activity between different classes on average or between individual students.
- A teacher has developed several versions of a lesson plan with the same virtual lab. He/she tested them with a small group of students and would like to know which version is best to use in full classes according to a certain set of criteria.
- A teacher would like to get a quick profiling of the class and adapt the teaching methodology accordingly.
- A teacher shared a virtual lab activity with a fellow teacher. They would like to compare whether they achieved similar learning results with their classes.
- A teacher would like to measure more objectively the complexity of a series of tasks by monitoring the average percentage of progress or overall time spent.
- The head master of the school would like to compare the ratio of students per connected device and how much time in total the virtual labs were used for teaching between two different semesters or year terms in order to better plan the distribution of available resources, e.g., to increase the number of computers in the classroom.
- This year the activities with virtual labs are scheduled close to lunchtime hours. Last year, they were scheduled early in the morning. Is there a measurable significant difference on the average learning outcomes?
- Several learning activities with virtual labs were assigned as homework to students. The teacher would like to monitor progress and know how much time they actually spent at home for the completion of the tasks.
- A teacher would like to identify low and high achieving students form past progress data to accordingly provide extra support and guidance or assign advanced tasks respectively.
- A teacher designed an educational activity where students can choose or not to get automated feedback for self-assessment during each phase or in total at the end. He/she would like to see how many students chose the offered option, whether this influenced their motivation or whether the learning results differed between the two groups.
- A teacher proposed three different virtual labs of similar complexity to his/her students that they can freely choose to use for their project work. He/she would like to monitor the popularity of each lab in terms of total time spent or number of students and whether the choices of their students were gender-balanced or not.
- The headmaster and the teachers of the school wanted to conduct a pilot study to assess their strategy to best promote collaborative work among their students. They designed a virtual lab activity which was implemented in all classes and in which students worked in pairs. In one class, students were free to form pairs as they like,

in another class the teacher made the pairs as learning tandems or learning pendulums. In one case, students were obliged to form pairs of same gender and in another of opposite gender. In one class, the pairs were formed at random and their learning results were considered as control set. The learning outcomes in each case, as collected and visualized by the analytics services, provided the needed guidance on which strategy is expected to have the best overall results.

3.4 Functional requirements

In this section, we present and discuss the functional requirements that the virtual lab authoring environment of ENVISAGE should accommodate. It is mainly written from an enduser perspective, i.e., a science teacher. Basic requirements were collected from teachers before, during and after the test piloting run in January 2017 in EA primary school. In the piloting, the "Wind Energy Simulation" virtual lab (<u>http://windenergy.ea.gr/</u>) was extensively implemented with students of 6th grade. In this respect, as a practical example we primarily focus on requirements that, on one hand, are related to possible enhancement of existing functionalities of this virtual lab and, on the other to the design or development of new features.

3.4.1 User interface

We distinguish between the user interface of the authoring environment and the user interface as delivered to students. The former is defined as the interface that the author, i.e., teacher, is using to design the educational activity incorporating various educational contents, such as theoretical background information, definition of tasks and instructions of usage, input requests and questionnaires, and finally the use of a virtual lab. The latter is what the student practically sees and uses to execute the educational activity. He/she interacts with it but cannot change its layout, its functionality, its content, etc. For convenience and as a general requirement a WYSIWYG design principle between authoring and delivery interfaces should be followed.

3.4.2 Authoring environment with multiple display frames

The authoring environment is composed of multiple main display frames. The frames can be arranged as vertical or horizontal tabs, as seen in Fig 3.2. This arrangement allows the teacher to structure the educational activity in separate steps or, e.g., inquiry phases. The teacher can Create, Copy, Move, Rename, Delete and Hide a display frame. All frames that are not in Hide mode will be displayed in delivery and can be seen by students. For example, a teacher creates a frame with title "Analytics" that contains the visualization of the collected analytics. It sets it in Hide mode so that students cannot see its content during the learning activity.

Figure 3.2: The starting display frame of the existing "Wind Energy Simulation" virtual lab. Additional frames of content with instructions, configuration, etc., are arranged as vertical tabs.

3.4.3 Display frame

Each display frame is composed of textual content, multimedia content and embedded online resources. A display frame may be divided in sub-frames, as seen in Fig 3.3, where they are arranged horizontally in subtabs. In such arrangement, for example, the teacher writes the instructions (textual content), adds a schematic or animation or video (multimedia content) or even embeds the content from an external website with the inclusion of a URL address (online resource). In a separate frame, the virtual 3D lab application is embedded along with its configuration interface as discussed below. Visualization content with respect to lab simulation results may be displayed in a different frame for better clarity and for the facilitation of further analysis.

A frame or sequence of frames may be lockable. This means that students can view the content shown therein only if they have completed correctly a given set of tasks or followed the whole path of inquiry phases in previous frames.

The teacher may have the possibility to set accordingly the basic aesthetics of the content of a frame. We refer here to general change of display settings such as font size, font style, font colour, background colour, dimensions/position of multimedia or embedded content.

Home								
Instructions	structions							
Aims of this simulation	Configuring the simulation	Running the simulation	Charts and reports	About wind turbines				
On a planet with an incre resource to generate elec		fuels, the need for alternati	ve energy sources increa	ases. Wind energy is one such source. Wind turbines use this natural				
	y it produces does not cause gre			l costs. No harmful polluting gases are produced. Once the wind at are not connected to the electricity power grid can use wind				
				e is no electricity. Also large wind farms are needed to provide entire enough electricity for 475 homes, when running at full capacity.				
little, or not too much - v generated even with all a	The aim of this simulation is to power a small town or village using a wind farm of between 1 and 10 turbines. You will see that maintaining the correct amount of power - not too little, or not too much - while both wind and the power requirements of the town are constantly fluctuating can prove a challenge. Sometimes there will be insufficient power generated even with all available turbines in operation. At other times the power generated will be too great. The aim is to maximise the amount of time that only the correct amount of electricity is generated.							
You will have control over the range of wind generated during the simulation, the number of turbines available, the range of of power required by the town or village, and the speed at which the simulation runs.								
While the simulation is ru start again.	nning you will be able to add or r	remove wind turbines to gen	erate more or less electr	ricity, pause the simulation, or stop and reset to reconfigure and				
	The results page shows a bar graph comparing the power requirements of the town with the power generated by the wind turbines for each hour of the virtual day. Pie charts show you a comparison between insufficient power generated, the correct amount of power generated, or too much power generated.							
Good luck!!								
Configuration								
imulation								
eport Charts								

Figure 3.2: The Instructions display frame of the existing "Wind Energy Simulation" virtual lab. Additional sub-frames of content within the same frame are arranged as horizontal sub-tabs.

3.4.4 Virtual 3D lab application

We propose the virtual 3D lab application or scene to be contained in a frame with default and fixed display parameters for best visualization depended on screen resolution. The configuration parameters and main settings of the lab and its components may be also included in the same frame, e.g., as a menu tab or embedded in the scene, for better and easier interactivity. Usual functions to change the 3D scene are expected such as Zoom in/out, Translation, Rotation, Standard projections. When a lab is composed of separate distinct components, the author/teacher should be able to change their position in the scene. There should be an option that the components' positions are pre-set by the teacher and either are fixed so that students cannot change them, or can be changed by students during the learning activity. As an example, and in particular in the case of the "Wind Energy" lab, which was actually piloted and implemented in real classroom environments, these options turned-out to be of significant importance for the design of learning activities of increased complexity. In this context, also, the general scene layout is of importance since the more realistic a 3D scene is the more appealing is for students. In this respect, for example, the overlay of a realistic 3D map of a seaside or mountainside or lowlands is more engaging in the case where students are assigned to study and investigate where is best to locate a wind energy plant given certain constraints.

3.4.5 Analytics and visualization services

We propose the learning analytics and visualization services to be altogether contained and displayed in a distinct frame which by default is hidden from students. The teacher can choose which parts may be shown to students so that they can monitor or self-assess their progress during or after a learning activity. In this particular frame, that may contain a series of subtabs if appropriate, the teacher will access a basic interface to make further analysis of the collected data, to visualize historical data, to change aggregation level, etc. Fig 3.3 depicts an example dashboard of analytics the content of which is visualized in various ways and is accompanied by short descriptions to help its interpretation by the user.

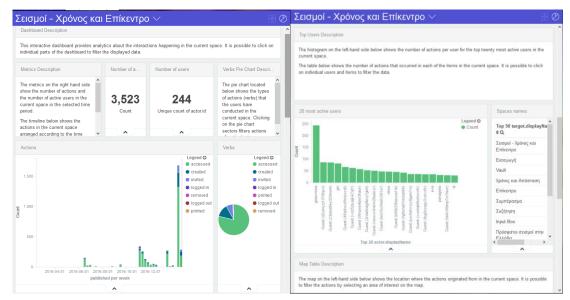


Figure 3.3: An example dashboard of analytics the content of which can be visualized in various ways. Short descriptions to help its interpretation by the user are also included.

3.4.6 An educational activity as a top level container object

An educational activity or lesson plan is the composition of several inquiry learning phases or/and problem-solving steps or tasks that are designed and arranged accordingly by the teacher in separate frames using the authoring environment. As already discussed above it contains all instructions, background information, questions, tasks, input requests, lab simulation applications, visualization of results that will be delivered to students. In a nutshell, it is a comprehensive online and interactive worksheet or, in other words, a metaphor of the conventional paper worksheets in school. As such, it basically is considered as a top-level container object which can be edited, copied, renamed, and deleted by the owner author/teacher.

4 Telemetry dataset

In the framework of the Go-Lab project, we obtained the system raw log data of user actions in the authoring environment. The dataset corresponds to the 18-month period of usage from March 2015 until July 2016. In the following, we first give a short overview to describe some basic functionalities and use cases and then the description of the content is given. The purpose of this description is to help the application of machine learning algorithms and practices in order to extract deeper information on how the environment was utilized, to identify patterns of usage, to categorize or cluster users or use cases etc.

4.1 General overview

The Go-Lab project developed a portal (<u>http://golabz.eu</u>) of online educational resources that includes a collection of online labs for science teaching, a set of supporting and scaffolding applications and a repository of online lesson plans/educational activities that were developed by users and teachers. The online lesson plans, called Inquiry Learning Spaces (ILS) in the project terminology, followed a templated structure of certain inquiry phases according to a standard inquiry teaching and learning model that was developed and documented by the project. The proposed inquiry model is composed of five phases, namely 1. Orientation, 2. Conceptualization, 3. Investigation, 4. Conclusion and 5. Discussion. In each phase of an ILS, the user or teacher can add and edit textual content, multimedia content and online labs, applications and resources using the authoring environment. A teacher may add additional inquiry phases, change their standard order or choose to hide or show some of them depending on circumstances, e.g., to shorten an educational activity due to time constraints. When finalized, an ILS can be viewed by students through a common web-link. Fig 4.1 shows a screenshot of an example ILS which contains several subspaces of content that correspond to different inquiry phases. The user can add content in each subspace creating a structured lesson plan – educational activity. Fig 4.2 depicts the final delivered ILS for in-classroom implementation and as viewed by students. The ILS's subspaces are arranged and shown in separate tabs and correspond to the different inquiry phases of the educational activity.

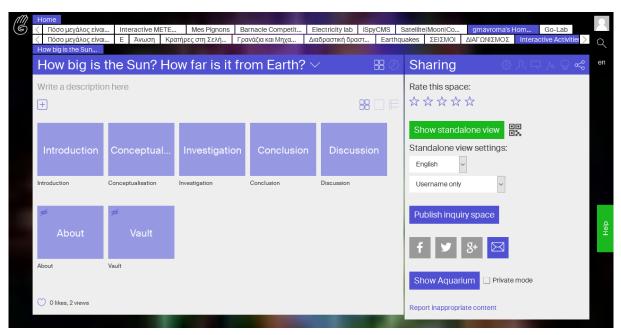


Figure 4.1: An example of an Inquiry Learning Space which contains several subspaces of content that correspond to different inquiry phases.

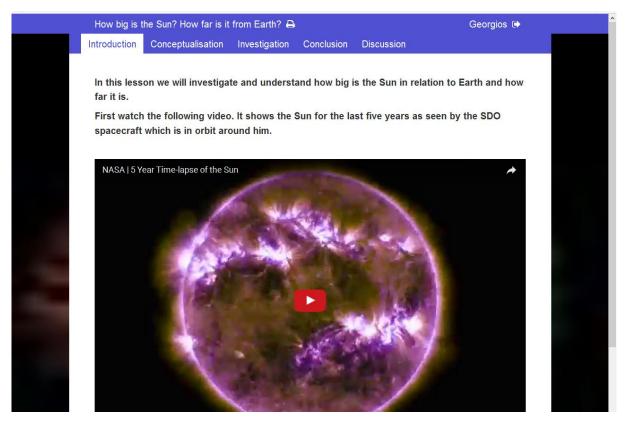


Figure 4.2: An example of an Inquiry Learning Space as delivered to students for in-classroom implementation. The ILS's subspaces are arranged in tabs and correspond to the different inquiry phases of the educational activity.

An ILS can be accessed in student-view mode by a nickname or a password set by the teacher. Each student is going through each phase and completes the corresponding tasks.

The system timestamps and logs each action. A basic analytics engine may retrieve the collected data and display in real-time or offline general overview information like number of logged-in students/viewers, time spent in each phase etc. In general, this functionality was not utilized by teachers as it was partially integrated and underdeveloped during the large-scale pilot in-school implementation periods of the project.

An ILS in technical terms is a container. It can be published to the public repository and from there other users can copy it and make their own clones, or, it can be shared between users in private and then be co-authored as a common lesson plan. A user of an ILS can be a viewer (can only view an ILS but he/she cannot edit, copy it or alter its content), or an editor (can view and edit an ILS but cannot delete it), or owner (can do all previous actions and also has permission to delete the ILS).

4.2 Description of content

The dataset of logged actions is available in .csv format (the corresponding filesize is 190 MB when zipped) and is stored in an online storage site. It can be downloaded by partners for study and analysis in the framework of ENVISAGE. The datafile contains 8 variables arranged in columns, as shown in the excerpt in Fig 4.3, these are as follows:

Id	: is the unique identifier of action					
verb	: is the type of action carried out by the user					
published	: is the timestamp of the action					
actorId: is the	actorId: is the unique identifier of the user who carried out the action					
actorType	: refers to owners (0), editors (1) and viewers (2)					
targetId	: is the unique identifier of the container of the action object					
objectId	: is the unique identifier of the action object					
ilsRef	: is the unique identifier of the ILS					

id	verb published		actorld	actorTyptargetId	objectId	ilsRef	
50 fd d4b fb 59 1 c 98 4 ba 38 c d 10 4 a d6 eb a 3	access ed	Tue Mar 10 2015 09:52:49 GMT+0100 (CET)	100462£2652d32d1dc04bbde938b79c4	2 co89fcb6dfbb0aaef17734bf8c324583	d62 a0fe0 be5 ab0f53525 e7 d3804b aa86	unknown	
31460807 #910 #0438 c22177b7354c1c	access ed	Tue Mar 10 2015 09:52:49 GMT+0100 (CET)	1004626262d32d1dc04bbde938b79c4	0 938 d973 e77 b8 a 185 ef03 be a63 e643298	b2e50e79790633ef9ee6fe384fa0bd66	5fb148681c2afece0034ec97d98034a	
ef646f236149a5b73f23aea41d51ef	access ed	Tue Mar 10 2015 10:26:02 GMT+0100 (CET)	10046212152d32d1dc04bbde938b79o4	0 ade6dx88dad34e6e75d4ab49a054e106	a de6dc88 d ad34e6e75 d4ab49 a054e 106	5fb148681c2afece6634ec97d98634a	
958 e50 48 368 ob b050b fe6 43 ec od c o0 a	access ed	Tue Mar 10 2015 10:26:11 GMT+0100 (CET)	1004626262d32d1dc04bbde938b79c4	0 55500 d17f281b2e74d5512f5a91f5f8b	obf80ec75cce4f19571d1aa6e7f64583	unknown	
22e66189e#5f3ba7168f2016cce108	access ed	Tue Mar 10 2015 10:26:11 GMT+0100 (CET)	10046242452d32d1dx04bbde938b79x4	0 dd19f4o5ad46f5f1773cf08c3c19d0e	8fe0de89519441aa3c0a9dccb22ee9a8	unknown	
441721b3ed4d0dacc16804211e819e6	access ed	Tue Mar 10 2015 11:06:30 GMT+0100 (CET)	1004624262d32d1dc04bbde938b79c4	0 ade6dx88dad34e6e75d4ab49a054e106	a de6do88 d ad34e6e75 d4ab49 a054e 106	5fb148681o2afece6634ec97d98634a	
158572b53a315bee0.aeba2o7ba9b152	access ed	Tue Mar 10 2015 11:08:12 GMT+0100 (CET)	10046262f52d32d1dc04bbde938b79o4	0 d98x0300xx88db4392206517d6e2xa71	d98x0300xx88db4392206517d6x2xa71	5fb 14868 1o2 afec e6634ec97 d98634a	
o0ff1975d94e72ab9b9f1567faf4d6o	access ed	Tue Mar 10 2015 11:08:37 GMT+0100 (CET)	10046262f52d32d1dc04bbde938b79o4	0 d98x0300xx88db4392206517d6e2xa71	d98x0300xx88db4392206517d6x2xa71	5fb148681o2afece6634ec97d98634a	
66fa7cdf287b3f7beb8debe6dff2970	access ed	Tue Mar 10 2015 11:09:01 GMT+0100 (CET)	100462f2f52d32d1dc04bbde938b79o4	0 c895d19b7a77e017bcee344ab19e39e	64e1128df5ca391020b2fe561a1e13fe	unknown	
29a5841146852e7acdea435b354153e	access ed	Tue Mar 10 2015 11:09:46 GMT+0100 (CET)	10046262652d32d1dc04bbde938b79c4	0 d98 c0300 cc88 db43922065 17 dbe2 ca71	d98x0300cx88db4392206517d6e2ca71	5fb148681c2afece6634ec97d98634a	
7fee9937436fca52a5d1cd983c6bde	access ed	Tue Mar 10 2015 11:09:46 GMT+0100 (CET)	1004626262d32d1dc04bbde938b79c4	1 1495e9b636aace9217b0012dc2bcb5b1	1495e9b636aace9217b0012dc2bcb5b1	5fb148681c2afece6634ec97d98634a	
451 107 d581 b761d3499e d8 b 1602 dfe b	access ed	Wed Apr 01 2015 17:35:50 GMT+0200 (CEST		2 c78 be db d25899 b89462e084857f526 d3	c78bedbd25899b88462e084857525d3	e18 a9914 ac c60b7 ae90434011 d5 1991f	
4656177552 ato a5724f2 o2 eff09d4 af	access ed	Wed Apr 01 2015 17:35:52 GMT+0200 (CEST		0 c78 be db d25899 b89462e084857f526 d3	a8769to 69 ea0 c885t13010bta e7b427	e18.49914.ac c60b7.ae90434011.d5199ff	
ed7d26048e2e174de7a6273deob1587	accessed	Wed Apr 01 2015 17:35:53 GMT+0200 (CEST		1 2290d572802d19ba7412s2se91932543	2290d572802d19ba7412o2oe91932543	e18.49914.ac c60b7.ae90434011.d5199ff	
7 de959 da67 428 209 4 dd d7 a85 24c 1e8	access ed	Tue Feb 10 2015 19:12:39 OMT+0100 (CET)	100960489832a1a62d0xb21x41a444248	2 e06b7e7b47f2fe527fd6581317 do	d6b2b45492d1ad4037dD168761fofD	utk powp	
04c940at94d42bbe1f19b74a5ee5c6	access ed	Fri Feb 13 2015 09:29:57 GMT+0100 (CET)	100960469832a1a62d0c621c41644246	0 049 de 657 193 16424826 1 o4b5800 ef	b503fx649eb9f5494008940e54db9e	unknown	
20573 a 17 4a a cd ad e e 5075 411 1135 e	access ed	F ri F eb 13 2015 09:31:26 GMT+0100 (CET)	100950489832a1a62d0c621c41644248	0 2b23a904586a d50b76 c99a34626 c6	9799a3a094c5add35d20b835bbe19e0	unknown	
10210 a0 1834d011 d7 ad4a0 d3 e92b70	access ed	F ri F eb 13 2015 16:02:09 GMT+0100 (CE T)	100960489832a1a62d0cb21c41644248	0 e455a7d534547d08379768c59ae74463	9cb62b65e39277d5e97712082734a4e	unknown	
4e6 e5258 19 b 219865 a6 44c5 c a9943 d0	accessed	Fri Feb 13 2015 16:05:03 GMT+0100 (CET)	100980489832a1a62d0cb21c41d44248	0 5e99755905413bcb4543t5e8604c9	a9243216 ce7 a14a1641 a6967 30e8to3	unk nown	
406767 a1 aa c d961793 to be c 4e 96 e 52 a	accessed	Fri Feb 13 2015 17:21:04 GMT+0100 (CET)	100960489832a1a62d0cb21c41d44248	0 81 a e004e390b8 ec3261483087 do4b182	b503fc649eb96494003940e54db9e	unknown	
11ab14572825dba3x0057589e4x38t5	accessed	Tue Feb 17 2015 21:43:40 GMT+0100 (CET)	100960489832a1a62d0c621c41644248	0 add9423927279 eb11699 eb6862b4c2d3	b503fc649eb95494003940e54db9e	unknown	
136 15979280 d1 1728d at94d b40d953 o	access ed	Tue Feb 17 2015 21:45:40 GMT+0100 (CET)	100960489832a1a62d0c621041644248	0 129656a7777772eb3ce0fb8d60f9a4ce	b503rc649eb95494005940e54db9e	unknown	
130 109 / 9230 01 17 230 35940 040 040 030	accessed accessed	Wed Mar 04 2015 16:05:42 GMT+0100 (CET)	100960489832a1a62d0 c621 c41 d44248	0 64a d23014737 edb a4eo47e04of07e744	b503fc649eb9f5494005940e54db9e	unknown	
315 c8 c11419d ar676 e455 e74 d5 1r110	access ed	Wed Mar 04 2015 10:07:09 GMT+0100 (CET)	100900489832a1a62d0cb21c41d44248	0 8403b1e131732fa260278df238fb66b	a9243216ce7a14a1641a696730e8tc3	unknown	
6e0/300064000eb43a4a631e16802	access ed	Mon Mar 16 2015 15:43:07 GMT+0100 (CET)		0 750420deeade1e03d5040edb0197777	b5031x649eb96494008940e54db9e	unknown	
084dfdab1153c7b2df10872555aa8	access ed	Mon Mar 16 2015 15:48:56 GMT+0100 (CET)	100960489832a1a62d0cb21c41d44248	0 52 a64358 1 a65 c a988 d dc 23 434 a9 a e9	3bf35ea2d6fda1ad8766fa6939ca256b	unknown	
99268b36ca1129197c25a7581e6a972	access ed	Mon Mar 16 2015 16:16:20 GMT+0100 (CET)	100960489832a1a62d0cb21c41d44248	0 be55c3284be83ffeff22b9ca0d80953	b503fc649eb9f6494008940e64dbf9e	unknown	
52b9937b267b94881efe13c699a18d1	access ed	Mon Mar 16 2015 16:18:45 GMT+0100 (CET)	100960489832a1a62d0cb21c41d44248	0 1715b488cca31e61aa1617c34c2d353d	b503fc649eb9f6494008940e64dbf9e	unknown	
2tb e8 a9 a6c68760 c508b225 ed 1e0 faf	accessed	Mon Mar 16 2015 16:19:55 GMT+0100 (CET)	100960489832a1a62d0cb21c41d44248	0 d1ede9a470224406e30a8e3c61a1143d	b503fc849eb96494008940e54db9e	unknown	
5 de #3b c3 e90 3d 4d 685 d6 f1 109 77 97 f	accessed	Mon Mar 18 2015 16:20:23 GMT+0100 (CET)	100960489832a1a62d0cb21c41d44248	0 4480d2d5805e6881b45bb97ed48a16o	3 bf35 ea2 d6fd a 1a d8768 fa69 39c a256b	unk nown	
3653fb3ff3b9949476b4ff490 o c8 efa	access ed	Mon Mar 16 2015 16:24:45 GMT+0100 (CET)	100950489832a1a62d0cb21c41d44248	0 2de09bd243dfe0o103b58oa70e2b115	3bf35ea2d6fda1ad8766fa6939ca256b	unknown	
3080b d010842508 e d5b6120 b7 1d7 d4f	access ed	Mon Mar 16 2015 16:28:09 GMT+0100 (CET)	100950489832a1a62d0cb21c41d44248	0 ef486far94ef2 c4481 cc5 c94993f0376	a9243216ce7a14a1641a696730e8tc3	unknown	
0 e0718feba38b cb3b c2fe5b44a330 c	access ed	Mon Mar 16 2015 17:23:33 GMT+0100 (CET)	100950489832a1a62d0cb21c41d44248	0 2ec160f7b13b1af6fa0c7f0961571e6	3bf35ea2d5fda1ad8766fa6939ca256b	unknown	
d5bb264ec6ca26aebo43d783d736d1	access ed	Mon Mar 16 2015 17:26:08 GMT+0100 (CET)	100960489832a1a62d0cb21c41d44248	0 1540d8td9540946be654d6d111a747a1	3bf35ea2d6fda1ad8766fa6939ca256b	urknown	
ce6193113efd168a7cab96a36610b2a	access ed	Mon Mar 16 2015 17:51:53 GMT+0100 (CET)	100960489832a1a62d0cb21c41d44248	0 5c8e64d794d21888f1e7d670a289f46	3bf35ea2d6fda1ad8766fa6939ca256b	unknown	
b d193474eb atd e8652541627 d65 13d7	access ed	Mon Mar 16 2015 17:53:15 GMT+0100 (CET)	100960489832a1a62d0cb21o41d44248	0 bo5926906b84d3364e3bebec9108e2o1	b503fc649eb9f6494008940e54dbf9e	unknown	
1be9ee616a5#46d92f7089254a543a	access ed	Mon Mar 16 2015 17:53:59 GMT+0100 (CET)	100960489832a1a62d0cb21c41d44248	0 8d4266a3abe17eba5507baf197acbo	3bf35ea2d6fda1ad8766fa6939ca256b	unicnown	
3894d542bdb92f0683273487f8721d7	access ed	Mon Mar 16 2015 17:55:43 GMT+0100 (CET)	100960489832a1a62d0cb21c41d44248	0 6b7f16a337a4ae999d73afado5864dob	3bf35ea2d6fda1ad8766fa6939ca256b	unicnown	
03fc3701a0d9b7e4a7c91983a6fec9	access ed	Mon Mar 16 2015 18:17:07 GMT+0100 (CET)	100950489832a1a62d0cb21c41d44248	0 86890017683H418 c56d60535476 e4333	3bf35ea2d6fda1ad8766fa6939ca256b	unknown	
c0debe6581909ed4b348b1bed53aca4	access ed	Mon Mar 16 2015 18:17:57 GMT+0100 (CET)	100950489832a1a62d0cb21c41d44248	0 57 db 163 c 435660b c6 d500f9b d ca a4067	fbfe6 def3 df79c31424884185a407646	unknown	
1847009825a9x33581754ax3408073	access ed	Mon Mar 16 2015 18:19:01 GMT+0100 (CET)	100950489832a1a62d0cb21c41d44248	0 ef07 c dd39 d c1 c051d 102439d256 ct510	3bdfb0212020089796d21cbeb128fb0c	urknown	
584b96c7d61a4166b1111a2e0f288	accessed	Mon Mar 16 2015 18:33:46 GMT+0100 (CET)	100960489832a1a62d0cb21c41d44248	0 6654b26786301de26edd6db6b7341a3	3 bf35 ea2 d5fd a 1a d8766 fa69 39c a256b	unknown	
d38690141321029c2atf03datfd055	accessed	Mon Mar 16 2015 18:37:32 GMT+0100 (CET)		0 97 c472d127 c91ed0fec8ba6bbc33d4b	3bdtb0212020089796d21cbeb128tb0c	unknown	
19e52 a2f56 10bbe dab ff7026b27 c242	access ed	Mon Mar 16 2015 18:37:41 GMT+0100 (CET)	100960489832a1a62d0cb21c41d44248	0 8721c1b81db051cf9781b1baf2de2729	3bf35 ea2 d6fd a 1a d3766 fa69 39c a256b	unknown	
8fo31e02cfo762db82f58b5aec39bd3	access ed	Mon Mar 16 2015 18:39:04 GMT+0100 (CET)	100960489832a1a62d0cb21c41d44248	0 24a138a0f7ae945584488652156doaa	3bf35 ea2 d6fd a 1a d8766 fa6939c a256b	unknown	
3 aef72(2057 d d89fcfe834/9eb af594	access ed	Mon Mar 16 2015 18:39:53 0MT+0100 (CE T)	100960469832a1a62d0xb21x41a44248	0 a6b1efb568f14e631fe63c6fd39477c4	3bf35ea2d6fda1ad8766fa6939ca256b	unknown	
e e 354b 140770104e f0 d0 4b d8566 150	access ed	Mon Mar 16 2015 18:41:04 GMT+0100 (CE T)	100960489832a1a62d0cb21c41444248	0 c/4b529f27b94ee4f774e55797049057	3bf35ea2d0fda1ad8700fa6939ca250b	unknown	
499 e074d9c7 d334110 b33010 dc5eb4	access ed	Mon Mar 16 2015 18:41:11 GMT+0100 (CE T)	100960489832a1a62d0cb21c41644248	0 470 d70b2e5 dd5 a0 a940 c01cebb eaf	3bf35ea2 d0fda1ad8760fa6939ca250b	urknown	
	1000255 EU	Mon Mar 16 2015 18:43:49 GMT+0100 (CE T)		1 tbf/db701f52331e6c1119b4ac9c9bfc	00100 002 00100 10 007 001000000 02000	900,0000	

Figure 4.3: An excerpt of the content in the datafile.

5 Summary

We presented a general compilation of behavioural data collected from virtual learning labs in the framework of the Go-Lab project and their analysis. The comprehensive analysis of the available data provided several deeper qualitative and quantitative understandings of the user behaviour, such as its development and evolution through time and across countries, on how and to what extent users utilized the offered services, whether they followed the proposed educational framework, etc. The experience gathered from the analyses of the available data is directly transferred to the ENVISAGE project in order to guarantee that more effective, thorough and comprehensive metrics will be implemented to collect the behaviour of each user, teacher or student, during the usage of a virtual lab in science teaching and learning.

In this context, we discussed and proposed a list of main metrics that can be collected by the analytics service, their definition and rationale of use. We also propose that the structure of the analytics data and its aggregation level to permit analysis and interpretation similar to the one that is conventionally done in the actual school environment. By following similar structure and interrelations and by providing visualization at similar aggregation, we believe that the task of its interpretation by the teachers will be greatly facilitated. We also discussed the functional requirements that the virtual lab authoring environment of ENVISAGE should accommodate. These are presented mainly from an end-user perspective, he/she being a science teacher. Finally, we gave a short overview to describe some basic functionalities and use cases of the Go-Lab system in the framework of which we obtained the raw log data of user actions in its authoring environment. This dataset is now available to partners of ENVISAGE for study and analysis. The description of its content is given to help the application of machine learning algorithms and practices for extracting baseline and deeper information on how the environment was utilized.

6 References

- [1] T. de Jong, S. Sotiriou, D. Gillet, *"Innovations in STEM education: The Go-Lab federation of online labs"*, J. Smart Learning Environments, vol. 1, no. 3, pp. 1-16, 2014.
- [2] G. Mavromanolakis, S. Sotiriou, "Diffusion of online labs and inquiry-based science teaching methods and practices across Europe", Proceedings of the 11th International Technology, Education and Development Conference, 6-8 March 2017, Valencia, Spain.
- [3] M. Ben-Peretz et al., *"The nature of time in schools: Theoretical concepts, practitioner perceptions"*, New York: Teachers College Press, April 2005.
- [4] H. Marks, "Student engagement in instructional activity: Patterns in elementary, middle and high school years", American Educational Research Journal, vol. 37, pp. 153-184, 2000.
- [5] PISA 2012, Results in Focus: What 15-year-olds know and what they can do with what they know, OECD Report, 2014.
- [6] PISA 2012, Results: Creative Problem Solving: Students' Skills in Tackling Real-Life Problems, OECD Report, 2014.
- [7] PISA 2012, Assessment and Analytical Framework: Mathematics, Reading, Science, Problem Solving and Financial Literacy, OECD Report, 2013.
- [8] PISA 2012, Field trial problem solving framework, OECD Report, 2010.
- [9] L. Bian, S-J. Leslie, A. Cimpian, *"Gender stereotypes about intellectual ability emerge early and influence children's interests"*, Science, Vol. 355, Issue 6323, pp. 389-391, 27 Jan 2017.
- [10] S. Khan, *"The One World Schoolhouse: Education Reimagined"*, Twelve Grand Central Publishing, 2012, ISBN: 9781444755770.
- [11] M. Rocard, P. Csermely, D. Jorde, D. Lenzen, H. Walberg-Henrikson, V. Hemmo, "Science education now: A renewed pedagogy for the future of Europe", Brussels: European Commission: Directorate-General for Research, 2007, ISBN – 978-92-79-05659-8.
- [12] E. Hazelkom et al., "Science education for responsible citizenship", Brussels: European Commission: Directorate-General for Research and Innovation – Science with and for Society, 2015, ISBN – 978-92-79-43637-6.