
 D4.1 - Final

 Page 1

ENhance VIrtual learning Spaces using Applied Gaming in

Education

H2020-ICT-24-2016

D4.1 - Architecture and Interface Design

Dissemination level: Public (PU)

Contractual date of delivery: Month 5, Feb 28, 2017

Actual date of delivery: Month 8, May 29, 2017

Workpackage: WP4 - Virtual labs authoring tool

Task: T4.1 - Architecture and interface design

Type: Report

Approval Status: Pre-final

Version: Final

Number of pages: 53

Filename: D4.1_DesignAndInterfaceArchitecture_Final.docx

Abstract

Relying on the functional requirements gathered in T1.2, we define the architecture of the

͞Virtual labs authoring tool͟ that will be capable of integrating the functionalities developed

in WP2 and WP3 into a web interface component able to communicate with a game engine

remotely in order to produce a lab. As regards the integration with WP2 and WP3, the

adopted architecture should make provision for effectively injecting the necessary metrics in

the virtual lab project to assess the user behavior during the experience of the virtual lab.

The selection of the basic technologies will also be made. Another responsibility of this task

is to analyze the functional requirements provided by WP1 in order to deliver an accurate

interface design of the authoring tool suitable for the virtual labs. Mockups will be used to

simulate the workflow between the supported functionalities and also act as a running

exercise between the interface designers and the author-users in defining the look and feel

of the authoring tool.

The information in this document reflects only the author͛s views and the European Community is not liable for any use

that may be made of the information contained therein. The information in this document is provided as is and no

Ref. Ares(2017)2702002 - 30/05/2017

 D4.1 - Final

 Page 2

guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information

at its sole risk and liability.

Co-funded by the European Union

Acknowledgment

This work is part of project ENVISAGE that has received funding from the European Union͛s

Horizon 2020 research and innovation programme under grant agreement No 731900.

 D4.1 - Final

 Page 3

Copyright

© Copyright 2017 ENVISAGE Consortium consisting of:

1. ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS (CERTH)

2. UNIVERSITA TA MALTA (UOM)

3. AALBORG UNIVERSITET (AAU)

4. GOEDLE IO GMBH (GIO)

5. ELLINOGERMANIKI AGOGI SCHOLI PANAGEA SAVVA AE (EA)

This document may not be copied, reproduced, or modified in whole or in part for any

purpose without written permission from the ENVISAGE Consortium. In addition to such

written permission to copy, reproduce, or modify this document in whole or part, an

acknowledgement of the authors of the document and all applicable portions of the

copyright notice must be clearly referenced.

All rights reserved.

 D4.1 - Final

 Page 4

History

Version Date Reason Revised by

v0.1 (alpha)

23/3/2017 Initial draft with Table of

Contents

Dimitrios Ververidis

v0.2 03/5/2017 First version Dimitrios Ververidis

V0.3 05/5/2017 Incorporating visual analytics Dimitrios Ververidis,

Christoffer Holmgård

V0.4 12/05/2017 Incorporating tracking Dimitrios Ververidis, Fabian

Hadiji

V0.5 (beta) 19/05/2017 Beta version for internal review Line Ebdrup Thomsen

V0.6 25/05/2017 Pre-final version Dimitrios Ververidis

V0.7 (final) 29/05/2017 Final version Spiros Nikolopoulo

Author list

Organization Name Contact Information

CERTH Dimitrios Ververidis ververid@iti.gr

CERTH Stathis Nikolaidis stathis.nikolaidis@iti.gr

CERTH Spiros Nikolpoulos nikolopo@iti.gr

CERTH Ioannis Kompatsiaris ikom@iti.gr

UoM Christoffer Holmgård holmgard@itu.dk

Goedle.io Fabian Hadiji fabian@goedle.io

 D4.1 - Final

 Page 5

Executive Summary

In this deliverable, we present the architecture of the virtual labs (games) authoring tool

which is a web based application to create web based or desktop based virtual labs. The

virtual labs authoring tool is a WordPress plugin that can be used by educators to create

custom Unity3D games without writing any code. The plugin allows the educator to create

game projects, scenes and assets by defining only their category and uploading the 3D

models. The categorization of the entities allows the entity to inherit the necessary behavior

from its category and thus hiding unnecessary details from the educators. The WordPress

plugin visualizes game analytics that are already embedded into the games as object

behaviours. This visualization allows the educators to improve the games accordingly in

order to adapt to learners͛ needs.

Envisage approach is connecting two dominating technologies in two separate fields, namely

WordPress for web based content management systems, and Unity3D for game authoring,

in order to achieve a high quality solution for building virtual labs and games in general.

 D4.1 - Final

 Page 6

Abbreviations and Acronyms

CMS Content Management System

API Application Program Interface

GUI Graphic User Interface

WebGL Web Graphics Language

SDK Software Development Toolkit

MAT Unity3D Material file format

OBJ Wavefront Object file format

MTL Wavefront Material file format

 D4.1 - Final

 Page 7

Table of Contents

1. State of the art review for educational games authoring 9

1.1 High Appealing educational games for kids 9

1.2 Existing game authoring tools 10

1.3 Trendy Technologies 13

1.4 ͞Living Lab͟ approach 14

1.5 User friendly for the teacher 15

1.6 Generic authoring tool 15

2. Requirements from the use case scenario 17

2.1 Shared high-level structure across generated games 17

2.2 Content requirements and technical specifications inferred from the ͞Wind Energy

Simulation͟ lab 18

2.3 What the game authoring tool should be able to change. 20

2.4 Hardware specifications 22

3. Architecture and interfaces design 23

3.1 Introduction to the implementation pipeline 23

3.2 Architecture design 24

3.3 Definition of game entities 25

3.4 Front-end interface 31

3.4.1 Game manager 32

3.4.2 Scenes Management 34

3.4.3 Scene Editor 35

3.4.4 Scene Creator 36

3.4.5 Assets3D Manager 37

3.5 Front-end Scene 3D editor 37

3.6 Conversion mechanism from WordPress to Unity3D game project 39

3.6.1 Unity game project 39

3.6.2 Predefined game object types 45

3.6.3 Compiling a Unity3D game project to a game 47

4. Analytics metrics injection for the game feedback mechanism 49

5. Architecture for extracting deep analytics and visualizing shallow and deep analytics 51

6. Architecture summary 52

 D4.1 - Final

 Page 8

7. References 53

 D4.1 - Final

 Page 9

1. State of the art review for educational games authoring

In this deliverable, an architecture of the virtual labs authoring platform is defined that:

1. delivers high appealing and educational games for kids;

2. it is based on existing tools for game authoring so that we will not re-invent the

wheel;

3. it will not become soon obsolete;

4. it meets the ͞Living lab͟ approach of D1.1 and D1.2 where the game analytics are

used by teachers to improve the game;

5. it is user-friendly for the educator;

6. it is generalizable for many use cases.

These factors will be analyzed in the following and a decision for the architecture design and

interface will be derived.

1.1 High Appealing educational games for kids

There are several learning games for kids available online, but after a while they are

abandoned. The main reason is the lack of several features that most of the educational

games online do not have, such as enjoyment, passionate involvement, structure,

motivation, ego gratification, adrenaline, creativity, social interaction and emotion [Prensky

͚01].

Educational games can be both two dimensional and three dimensional. Two dimensional

games have been extensively used in the past as a learning experience with several

examples such as those found in Go-Labs1, Photodentro2, and Fun4thebrain3. These games

involve puzzles, crosswords and multiple-choice questions by clicking or drag-n-drop actions.

Three dimensional games offer a more rich experience where the student can be immersed

into the educational task. Such examples are Second Life, Minecraft and Quest Atlantis4.

Second Life has obtained a negative opinion from parents since it is highly addictive and it

can expose kids to danger. Minecraft is often used in educational contexts but the

minimalistic graphics do not offer a realistic representation of many problems that should

be visible in real graphics. Such a case is Quest Atlantis, as shown in Figure 1.1, as it is an

educational gaming environment for upper elementary and middle school kids, in lessons

from science to social issues but it is abandoned in the last five years since it is costly to

update and maintain.

In Envisage, the target is to build virtual labs, and therefore we will focus on 3D games as

they offer a great level of immersion for virtual experiments and simulation. However, 3D

games cost much more than 2D games because they are difficult to develop. These two

1
 http://go-lab-project.eu/

2
 http://photodentro.edu.gr/aggregator/

3
 www.fun4thebrain.com/

4
 http://atlantisremixed.org

http://go-lab-project.eu/
http://photodentro.edu.gr/aggregator/
http://www.fun4thebrain.com/
http://atlantisremixed.org/

 D4.1 - Final

 Page 10

aforementioned conclusions will lead us in the final architecture in the end of this section.

Figure 1.1: Atlantis Remixed was a 3D game specifically designed for education.

1.2 Existing game authoring tools

There are two categories of authoring tools for making educational games, namely those for

2D and those for 3D. As regards 2D games, there are several authoring tools targeting

educational purposes, such as Manga High5, which is one of the most advanced ones. Others

5
 https://www.mangahigh.com

https://www.mangahigh.com/

 D4.1 - Final

 Page 11

can be found in Classroom Aid6. However, authoring tools specifically for making 3D

educational games do not exist, as it is not commercially viable to make a game editor only

for educational games. Therefore, learning game designers use mainstream authoring tools

such as Unity3D to develop such games, as shown in Figure 1.2.

Figure 1.2: Unity3D environment for making 3D games.

Mainstream authoring tools for 3D games are desktop applications born at ͚90s and

matured through several decades as games became popular across all ages. In Table 1.1, we

have summarized the major authoring tools. The most popular desktop-game development

tools are the Unity3D and Unreal Engine. Their major advantages is the export of games in

binary formats for desktops, mobiles, consoles, and javascript for the web. As regards the

javascript web format, the game is exported into javascript format either with a

transformation tool called emscripten (Unity3D, Unreal Engine and Godot) or by

incorporating a javascript framework (Copperlicht). Emscripten is a transpiler that

transforms binary into machine-generated javascript code.

Unity3D and Unreal have plug-ins for incorporating multiple interfaces, such as Kinect,

Oculus, LEAP motion and other types of sensors. Unity3D is open source but has a license

that requires a fee when the income of the resulted game exceeds 100.000$. Something

similar is valid for Unreal Engine. Another option is the Torgue3D gamemaker, being a

completely open software with MIT license and quite mature. However, it has a very small

community and it does not export the games into mobiles and consoles. Open source

solutions such as Blender, Godot, and Copperlicht are immature, lightweight or lacking

6
 http://classroom-aid.com/play-and-learn/game-building/

http://classroom-aid.com/play-and-learn/game-building/

 D4.1 - Final

 Page 12

export formats. The rest of the development tools such as CryEngine, GameMaker,

Copperlicht, and ShiVa are closed source with a proprietary license.

Unity3D is the most widespread solution due to the community that has been built around

it, its three decades in the market, due to its mixed policy of open source and proprietary

license, and its market named as Asset store that allows external developers to sell or share

custom plug-ins.

Table 1.1: Game authoring tools.

Authoring

tool

Complier/

framework

GUI License Export

game

Features Url

Unity3D Unity Unity Open but

Proprietary if

earnings >

$100k

Desktop,

Mobile,

Web,

Consoles

Leap, Kinect,

Oculus ++

unity3d.com

Unreal

Engine

Unreal Unreal Open but

Proprietary if

earnings

>$12k

Desktop,

Mobile,

Web,

Consoles

Leap, Kinect,

Oculus ++

unrealengine.com

Torque3D GFX Torque3D MIT Desktop,

Web

LEAP, Oculus,

RazerHydra

garagegames.com

Blender Blender Blender GPL Desktop Incomplete blender.org

Blend4Web Blender Blender Proprietary Web Plug-in for

blender

Blend4web.com

Godot Godot Godot MIT Desktop,

Mobile,

Web

Lightweight godotengine.org

Copperlicht Copperlicht Copperlicht GPL Web No plug-ins

for third party

software

ambiera.com/copperlich

t

Unity3D is selected for our architecture because it combines realistic graphics, wide

community, commercial plan for viability, and many expansions to several interfaces.

However, it can only be used by programmers because it is very complicated and requires

programming and graphics language knowledge. However, not all teachers/educators are

https://unity3d.com/
https://www.unrealengine.com/blog
http://www.garagegames.com/
https://www.blender.org/
https://www.blend4web.com/en/
http://www.godotengine.org/
http://www.ambiera.com/copperlicht/
http://www.ambiera.com/copperlicht/

 D4.1 - Final

 Page 13

programmers; in fact, only a small part of them possesses the required skills. Therefore this

problem should be addressed in our architecture.

1.3 Trendy Technologies

The technology that has become trendy the last 5 years is the WebGL, which allows 3D

graphics to be natively rendered in Web browsers under the HTML5 standard. WebGL today

replaces Java applets and Flash languages in gaming. WebGL has several pros and cons. The

pros are that it is easily accessible because it is accessed from web browser, always updated,

it is transparent as regards security issues (whereas Java and Flash games were not), and it

does not affect the operating system since it is not installed anywhere. The cons is that its

quality is inferior to desktop games, there are not many authoring tools, libraries or

frameworks for WebGL games, and there is no dedicated physics engine as all authoring

tools use a transpilled version of Bullet library for C++ named as canon.js or ammo.js.

Some web-based game authoring tools, libraries or frameworks are shown in Table 1.2. The

oldest one with the biggest community is Three.js, which is a framework that provides

higher level commands for 3D graphics. It is well documented but lacks a graphic tool.

Microsoft's͛ Babylon.js is the second most popular framework. It also has a GUI with

extensive capabilities which, however, targets for programmers. SuperpowersHTML5 is a

new game development tool built on top of Three.js framework that has developed a GUI

targeting programmers also. The GUI also supports real-time collaboration between

programmers that allow for making a game faster. Other open technologies are XeoEngine

and Turbulenz but they do not have a GUI. Commercial game development tools with

advanced GUIs also targeting programmers are PlayCanvas, and Goo. From all these choices,

Three.js seems to be the most suitable choice, as it is maintained by an open community and

not a company as Babylon. SuperpowersHTML5 can be also considered for making a

simplified GUI version on top of Three.js.

Table 1.2: WebGL tools-libraries-frameworks for making 3D games

Gamemaker Complier/

framework

GUI License Export

game

Url

Threejs Three.js Three.js Editor MIT Web https://threejs.org/

Babylon

Babylon Babylon Editor ASL 2 Web https://www.babylonjs.co

m/

SuperpowersHtml5 Three.js SuperpowersHTML5 ISC (GPL

like)

Web,

Desktop

http://superpowers-

html5.com/index.en.html

XeoEngine XeoEngine

(SceneJS)

No MIT Web https://github.com/xeolabs

/xeogl

https://threejs.org/
https://www.babylonjs.com/
https://www.babylonjs.com/
http://superpowers-html5.com/index.en.html
http://superpowers-html5.com/index.en.html
https://github.com/xeolabs/xeogl
https://github.com/xeolabs/xeogl

 D4.1 - Final

 Page 14

Turbulenz Turbulenz No MIT Web http://biz.turbulenz.com/

PlayCanvas PlayCanvas PlayCanvas Proprietary Web, iOS https://playcanvas.com/

Goo Goo Goo Create Proprietary Web https://learn.goocreate.co

m/

From our research we realized that existing WebGL frameworks are not yet mature for

providing a high quality game, instead, it is better to rely on desktop game authoring tools to

provide a transpilled game of a binary into WebGL. However, WebGL frameworks are

suitable for making 3D level editors for remotely modifying desktop game projects because

they are frameworks that allow a) to make a level editor customized for educators and b) to

develop one solution for all teachers͛ computers because web-browsers exist to any desktop

operating system, namely Mac, Windows or Linux.

1.4 Living Lab approach

Envisage is based on the ͞Living Lab͟ approach, namely expose the game to the students,

gather analytics, modify the game, re-expose the game and repeat this cycle until a mature

solution is reached. In order to allow such an approach, a web based game should be

developed that is easily updated without any need for re-installation. Therefore WebGL

should be selected as a technology for making games.

The ͞Living Lab͟ approach requires the gathering of data (shallow analytics) and the process

of the data with machine learning methods (deep analytics). Shallow analytics require the

injection of metrics functions that track users͛ actions in the game and submit the data to a

dedicated server. The metrics functions should be inside the WebGL javascript code.

However, desktop game authoring tools, that we are going to employ for providing high

quality games, produce a transpiled version of WebGL javascript that it is machine

generated and not understood by humans. Therefore, the metrics functions should be

installed before the transpile, namely when building the project in C++ or Javascript

(Unity3D and Unreal support coding in both languages). Further details about the injection

of metrics functions can be found in Section 4.

As regards deep analytics, i.e. the statistical process and the visualization of metrics data

should be presented to teachers in order to improve the games, it should be programmed a)

in a web based language as regards the visualization and b) a server based language as

regards the statistical process of the data. Web based visualizations are suitable because

they can be accessed easily by teachers from a web-browser. A suitable web-based

visualizations technology is HTML-Javascript, as it will be further discussed in Section 5.

Statistical process of the data should be done in Server side since it involves complicated

numerical functions and machine learning. Suitable technology for machine learning in

http://biz.turbulenz.com/
https://playcanvas.com/
https://learn.goocreate.com/
https://learn.goocreate.com/

 D4.1 - Final

 Page 15

server side is Python language because it has components that allow numerical functions

(numpy), machine learning functions (scipy) and even deep-learning functions (TensorFlow).

1.5 User friendly for the teacher

The game authoring tool should be user-friendly to the teacher. Desktop-based game

authoring tools (Unity3D, Unreal Engine), as it was previously discussed, are difficult to

master for teachers because they mainly target programmers. Envisage therefore, needs

to develop a game authoring tool that:

1. is web based in order to be easily accessible and portable to many operating

systems

2. hides unnecessary technical details from teachers, but simultaneously being

functional,

3. stay within the budget of Envisage project

4. find track into an existing community hoping to attract the general interest of game

developers.

In order to fulfill the aforementioned requirements, we need to rely to an existing web-

based Content Management System (CMS) that provides the main web functionalities such

as security, user management, content management, uploading functionalities, etc. To

address this need, two options exist, either to use a general purpose CMS where WordPress

is dominating with 60% of popularity among all websites globally, or use a educational

focused CMS (learning CMS, LCMS) where Moodle is dominating. WordPress has a greater

variety of plugins, a wider community of users and developers, and it is born in 2010.

Moodle started in 2001, it has a limited community of developers, but it is very popular

among teachers and students. We have decided to select WordPress for building our game

authoring tool, as a plugin in WordPress terminology, because a) WordPress also has 3rd

party plugins that allow it to become a LCMS (e.g. DashLearing for WordPress plugin), b)

WordPress can find track also to game authors but not only for teachers; and c) Moodle

technology looks obsolete as regards modern web pages.

1.6 Generic authoring tool

The scope of Envisage is to provide a game authoring tool that is generalizable for many use

cases, which will help towards its commercialization. Therefore, Envisage will be based on

game templates where each template allows to build several games for a specific subject

e.g. chemistry, physics, or renewable energy. The templates allow to hide technical details

from the teachers because the teacher has only to select a category for an item, so as the

item to automatically inherit all the behaviors of its category. An example could be, if for a

3D object the selected category is ͞Terrain͟, then the 3D object becomes a fixed ground

where items stay on top of it. In order to develop the template, an original game is studied,

optimized, and the Unity3D code is split into pieces. Unity3D employs the YAML (Yet

Another Markup Language) format, which is a kind of XML. Each piece of YAML (snippet) is

modified in order to have variables instead of fixed values at certain positions. Therefore,

 D4.1 - Final

 Page 16

each game object is actually an instance of the YAML snippet with different variable values.

 D4.1 - Final

 Page 17

2. Requirements from the use case scenario

The requirements of the use cases scenarios as described in D1.1 and D1.2, are reviewed

here from a technical aspect that will determine the architecture of the virtual labs game

authoring tool. Envisage, will develop a virtual labs game authoring tool has the ability to

cover several lab cases through respective game templates, and allow the educators to

generate an arbitrary number of game instances at multiple setups focusing on customly

defined goals. The game templates allow the abstraction and generalization of the

developed authoring tool. However, for the needs of defining the architectural design, we

focus on a certain game template that will be used for generating games related to

renewable sources of energy, which is currently named as ͞Wind Energy Simulation͟ lab.

The virtual labs game authoring tool, produces games that have a certain structure in their

͞Main Menu͟ which is described next.

2.1 Shared high-level structure across generated games

All generated games should follow a certain formalism in the Main Menu so that the

generalization is possible through the developed authoring tool. The following formalism is

popular in the majority of the modern games and it will be adopted in our architecture.

All games should have an entry scene, named as ͞Main Menu͟, which is the central point of

the game where the learner can select what to do next by the means of buttons. A mockup

of the ͞Main Menu͟ scene can be seen in Figure 2.1.

Figure 2.1: Main menu scene organization.

The Main Menu should have ͞Help͟, ͞Options͟, ͞Login͟, ͞Credits͟, and ͞Select Level͟ scenes

for the following reasons.

1) Help scene: The educators should be able to put the learning material in this scene in

order to guide the learners. The time spent by the learner in this scene should be

tracked.

2) Options scene: In this scene learners could be able to change game generic

 D4.1 - Final

 Page 18

parameters such as detail level so that the game can run smoothly on low-end

devices.

3) Login scene will allow to provide learner input such as name, surname, school etc in

order to improve the game analytics

4) Credits view: The organization that developed the game should be acknowledged.

5) Select Level scene will allow the learner to select an Educational Scene for playing.

This is described next.

The games should have an arbitrary number of ͞Educational Scenes͟ focusing on each

educational goal as defined by the educators, and according to D1.1, the time spent in each

Educational Scene should be tracked. Figure 2.2 depicts how ͞Select Level͟ scene will be

implemented. Each Educational Scene is represented by a tile with a featured image and the

name of the scene. The scenes are presented in an ascending order from left to right, and a

slider will exist to allow to see and select scenes that escape from the screen limits. The

educator will have the option to lock successive scenes, so that the learner should pass from

the previous scene in order to unlock the next one.

Figure 2.2: Select level scene allows the learner to play a certain scene.

As regards the virtual labs game authoring tool, the overall prerequisite is that all games

could be created and edited from the web browser, and should be compiled to be played

also from the web browser without the need of downloading and installation. Next, the

content of an Educational Scene is described.

2.2 Content requirements and technical specifications inferred from the

Wind Energy Simulation lab

A certain lab, namely the simulation of production-consumption of electrical power in an

urban area was selected as a prototype in order to examine the game requirements; to

develop a Unity3D game that can be extended; and for allowing us to estimate the

abstraction that should be made in order to develop the authoring tool.

The target of the simulation is to adapt the energy production to the energy consumption,

Select Level Scene

 Featured Image of
Educational Scene

1

Educational Scene
1 name

 Featured Image of
Educational Scene

2

Educational Scene
2 name

See
more
slider

..

 Featured Image of
Educational Scene

3

Educational Scene
3 name

 D4.1 - Final

 Page 19

where both vary over time. An image of a prototype virtual lab is shown in Figure 2.3.

Figure 2.3: Prototype of virtual Lab for learning about renewable sources of energy.

The learner actions in this Educational Scene are as follows

a) the learner can change the number of wind turbines by pressing the plus button in

left side of the game. This action should be tracked in order to investigate when the

user starts interacting with the game and when each turbine is placed.

b) the learner can turn-off a turbine by clicking on it when the power generation

greater than the consumption. This action should be tracked for allowing to

investigate the learner inference capability.

c) the learner can change the air speed variability (upper-lower, limit) and the city

consumption (upper-lower limit) through the gear icon on the left. This action should

be tracked in order to see that the learner runs the simulation in various conditions.

d) the learner can repair a turbine if the turbine outputs smoke by clicking on it.

Visualizations

e) the terrain, the wind-turbines, and the city are 3D models

f) the user can orbit around the scene to see the turbines from all sides

g) energy production-consumption and wind speed are provided in the lower-left panel

h) the city is depicted in an overlay map in the left corner that displays the buildings in

red when the power from wind-turbines is not enough, green if it is in balance, or

blue if it is overpowered.
Game rules and rewarding

i) if the energy need and production are in equilibrium the learner earns some virtual

coins. If the user repairs a turbine, then loses some virtual coins. Every 5 seconds, the

 D4.1 - Final

 Page 20

status of the game should be reported which is a vector consisting of

1) wind speed

2) energy production

3) energy consumption

4) turbines places

5) turbines set off

6) money owned

In a second type of educational scenes, the configuration of wind speed limits and energy

consumption limits will be forbidden to change. The wind energy profile and the

consumption profile will be set a priori from the educator based on the needs of an actual

area.

In a third type of educational scenes, the configuration of wind speed limits and energy

consumption limits will be adapted automatically based on the virtual coins earned

(Dynamic Difficulty Adjustment). If the coins are too much then the limits will be moved to a

position to increase the difficulty to earn coins, and vice versa.

2.3 What the game authoring tool should be able to change.

Based on the prototype, we found certain entities that should be isolated and customly

defined by the game authoring tool. These are outlined in Table 2.1. Namely, energy can be

generated from ͞Windmills͟, ͞Solar panels͟, and ͞Hydro-electric power plants͟ whereas it is

consumed from ͞City buildings͟. The landscape is formed by ͞Land͟ and ͞Water͟ objects.

Table 2.1: Varying entities in a ͞Energy - Simulation͟ game.

Asset3D type Description Properties

Wind mill A 3D object that can

- generate energy

- have animation of propellers

- can be damaged and repaired

- 3D model

- Energy production at various air

speed conditions

- damage probability

- repair cost

Solar panel A 3D object that can

- generate energy

- can be damaged and repaired

- have animation to point at sun

direction

- 3D model

- Energy production at various sun-

temperature conditions

- damage probability

- repair cost

Hydro-

electric

power plant

A 3D object that can

- generate energy

- can be damaged and repaired

- 3D model

- Energy production at water flow

conditions

- damage probability

- repair cost

 D4.1 - Final

 Page 21

City building A 3D object that

- consumes energy

- 3D model

- Energy consumption with respect

to time

Land A 3D object that

- it serves as the landscape

- 3D model

- wind flow deterioration

depending on the landscape

shape

Water A 3D object that

- represents water

- 3D model

- water flow coefficient with

respect to time

The game authoring tool should allow the educator the following actions during the process

of game design :

1. to customize the profiles of the wind flow, water flow, cloud-ness and temperature

so that a certain scene can obtain the necessary profiles to simulate a year of energy

production;

2. enable to the educator to add multiple scenes within one game, where each scene

represents a certain place on Earth;

3. the game should have a priori 5 fixed scenes such as ͞Main Menu͟, ͞Credits͟,

͞Login͟, ͞Help͟ and ͞Options͟ where the only thing that can be changed by the

educator is the text language, the position of the buttons, and some featured

images;

4. to place instances of the aforementioned game objects such as ͞Wind mill͟, ͞Solar

panel͟, ͞Land͟ etc. to certain places so that a custom scene is defined. This should be

achieved with a drag-n-drop GUI with a 3D gizmos (graphic help elements);

Other properties of the game authoring tool are as follows.

5. the generated games should by definition have game tracking code as defined in

Section 2.1;

6. The energy generators should have a on/off switch by their definition

7. the game authoring tool should also allow the visualization of game analytics that

will help educators to design a better game;

8. the game authoring tool should allow for the remote compiling of the game and to

provide to the educators the web or file link of the game in order to disseminate it.

2.4 Hardware specifications

The games should be able to run in a personal computer with a web browser such as

͞Chrome͟, ͞Firefox͟ etc or they should be able to be downloaded for a local installation as

binaries for a better experience. As games target in elementary and secondary school

children, the hardware recommendations should be for middle-end devices. However, the

 D4.1 - Final

 Page 22

games should provide the option to deteriorate the detail level in order for the game to run

smoothly on low-end personal computers. A graphics card (GPU) is recommended. In detail

the software-hardware minimum recommendations are:

a) PC Operation System: Windows 7, Linux, or Mac

b) CPU: i5 processor of first generation or any equivalent

c) RAM: 4 GB

d) Web browser: Chrome, Firefox, Edge

Optimum specifications are:

e) CPU: i5 processor of 3rd generation or any equivalent

f) RAM: 8 GB

 D4.1 - Final

 Page 23

3. Architecture and interfaces design

3.1 Introduction to the implementation pipeline

We seek an architecture that will serve as the skeleton where all the necessary features will

be added. We have a strong emphasis on developing a low complexity, easily modifiable, but

linear evolving implementation that will not be limited in the future to its design and will

allow to cover whatever feature will be needed a posteriori. A simplistic overview of the

architecture is shown in Figure 3.1.

Figure 3.1: virtual Labs game authoring tool is a WordPress plugin.

Envisage ͞Master Server͟ is a standard personal computer with the following software:

a) Windows or Ubuntu operation system,

b) an http server such as Apache server,

c) a MySQL database server,

d) WordPress CMS, in order to generate automatically a Web portal and a MySQL

database schema that will allow for user and multimedia management (register,

upload, edit, view etc.),

e) Unity3D that offers the compiler for compiling game projects from Unity3D project

format (YAML) to WebGL format or a binary format (Mac, Windows, Android etc.).

The aforementioned software, apart from Windows, is provided free. Unity3D is provided

free or under a commercial license as discussed in Section 1.

The main product of Envisage is the WordPress plugin named as ͞virtual labs game

authoring tool͟. The plugin will be able to generate game projects, based on templates of

code that can be compiled from Unity3D compiler. Secondarily, game analytics technologies

are going to be incorporated in order to achieve a feedback mechanism for the educators.

More details are described next.

3.2 Architecture design

The overall architecture of the plugin is shown in greater detail in Figure 3.2. The backbone

 D4.1 - Final

 Page 24

of the system is three servers, namely:

a) the ͞Master Server͟ that contains the functionalities for authoring games, i.e. the

͞Virtual labs game authoring tool͟.

b) the ͞Shallow Analytics Server͟ that collects-stores-aggregates-augments raw game

analytics

c) the ͞Deep Analytics Server͟ that process the game analytics of the ͞Shallow Analytics

Server͟ and ports the results to the ͞Master Server͟ as feedback for educators.

Figure 3.2: Second diagram of the architecture that displays logical components in greater

detail.

In the Master Server, the Developed Plugin is installed under a WordPress CMS framework.

The Developed Plugin has the following main functionalities:

1) provide a front-end web interface that allows the educators to login, create or edit a

game. This front-end is shaped through a developed theme that provides the

required usability level. There is also a back-end, which however is used only by

programmers for testing and debugging purposes because it does not have the

 D4.1 - Final

 Page 25

required level of usability;

2) manage the logical entities of the games such as Games, Scenes, and Assets 3D.

These entities are stored in the MySQL database schema or in an assets folder if

there are big 3D files;

3) assembly the Unity3D game project (YAML) that can be compiled from Unity3D game

compiler;

4) provide the game to the learners either as a link if it is compiled for web or as a

zipped file if it is compiled for desktop use.

The ͞Shallow Analytics Server͟ provides the following functionalities:

1) provide an API to receive analytics data from games (API IN). The compiled games

will already have metrics functionalities embedded from the game template and they

will be automatically connected with the API IN through HTTP protocol. Also the API

IN allows for processed Deep Learning Analytics to be received and stored in the

Shallow Analytics Server;

2) aggregate and augment raw data (see Section 4);

3) store analytics data in a database schema;

4) provide an API for sending analytics data to Deep Analytics Server or to Master

server (API OUT).

The ͞Deep Analytics Server͟ provides the following functionalities:

1) provide an API for receiving analytics data from Shallow Analytics Server (API IN);

2) estimate features on analytics data that have meaningful information;

3) process features with machine learning techniques in order to extract a meaningful

pattern;

4) provide an API for sending processed user analytics data to the Shallow Analytics

Server in order to be stored. These analytics will be used by the educator, through

proper visualizations, to modify the game.

A typical scenario is as follows: a senior educator enters the front-end of the Master Server

and creates a new game project with some empty scenes and uploads the necessary assets

of the scene. Then edits the scenes, e.g. by placing certain assets to certain positions. The

game project is then compiled to a game and it is disseminated to the learners. After some

time, a simple educator enters the front-end, examines the games analytics and accordingly

makes the necessary changes in order to improve the game. The difference between the

senior educator and the simple educator is that the simple educator does not have to

upload any scene asset as all assets will be already uploaded. The game is then compiled

again and a new version is disseminated. This cycle goes on until the game achieves the

educational target.

3.3 Definition of game entities

In this section, the entities of a game in the virtual labs game authoring tool will be

described. In order to define entities in WordPress, we have to understand both WordPress

and Unity3D mechanisms. WordPress is based on the following principles that are depicted

 D4.1 - Final

 Page 26

graphically in Figure 3.3, namely:

1. The main structure that stores information in WordPress is a Custom Post Type, or

briefly CPT.

2. Each CPT has customly defined fields and fields͛ respective values that are called

metadata fields and values, respectively.

3. The main structure that stores categorical information in WordPress is called

taxonomy.

4. Each taxonomy is a set of customly defined values that are called taxonomy terms.

5. Each CPT can have customly defined taxonomies and taxonomies respective terms.

6. Each taxonomy term can have also customly defined fields and fields͛ values that are

called taxonomy metadata and values, respectively.

Figure 3.3: WordPress main structure for saving data.

In order to define game entities in WordPress we should also understand Unity3D

mechanism, which is shown Graphically in Figure 3.4, and described in the following:

1. A Game Project is a set of Scenes, Assets, and Game Project Settings.

2. A Scene is a set of Game Objects and some Scene Settings.

3. A Game Object is an instance of an Asset 3D (a 3D model). A Game Object has

Components with Properties that define its behavior.

4. Several Assets 3D are available to be instantiated as Game Objects in a Scene.

However, an Asset 3D may not be instantiated to any Scene, but still exist as a

resource in the Game Project for future use.

 D4.1 - Final

 Page 27

Figure 3.4: Structure of a typical Unity3D game.

In order to match Unity3D entities to WordPress entities, we define 3 CPTs, namely CPT

Game Project, CPT Scene, and CPT Asset3D. All these CPTs have custom metadata and

custom taxonomies. Metadata are used for storing field information such as the color of a

3d model, whereas taxonomies are used for defining the behavior of the CPT inside the

game, e.g. ͞Terrain͟. In Table 3.1, we present the matching between Unity3D entities and

WordPress entities.

Table 3.1: Matching WordPress entities with Unity3D entities

Unity3D Entities WordPress Entities

1 Game Project

Example:

͞EA Wind Energy

Lab͟ project

CPT Game

with taxonomy ͞Game Type͟

Example:

- ͞EA Wind Energy Lab͟ is an instance of CPT Game.

- ͞EA Wind Energy Lab͟ should have for ͞Game Type͟ taxonomy

the term ͞Wind Energy Lab͟ selected.

2 Scene

Example:
͞Educational Scene 1͟

CPT Scene
with taxonomy ͞Scene Type͟

Examples:

- ͞Educational Scene 1͟ is an instance of CPT Scene

- ͞Educational Scene 1͟ should have for ͞Scene Type͟ taxonomy

the term ͞Educational scene͟ selected.

3 Asset CPT Asset3D

 D4.1 - Final

 Page 28

Example:

͞Wind Turbine͟

with taxonomy ͞Asset3D Type͟

Example:

- ͞Wind Turbine͟ is an instance of CPT Asset3D

- ͞Wind Turbine͟ should have for ͞Asset3D Type͟ the term

͞Energy Generator͟ selected.

4 Game Object

Example:

͞Wind Turbine 15͟

An instance of CPT Asset3D

Example :

- ͞Wind Turbine 15͟ is an instance of CPT Asset3D ͞Wind

Turbine͟

5 Game Properties Are defined from ͞Game Type͟ taxonomy term metadata values,

e.g. 3D vs 2D game property

6 Scene Properties Are defined from ͞Scene Type͟ taxonomy term metadata values,

e.g. fog, occlusion settings, rendering settings

7 Game Object

properties

Are defined from ͞Game Type͟ taxonomy term metadata values,

e.g. hasGravity= false

The logical connection of the entities is shown in Figure 3.5. The Games Projects are divided

by ͞Game Project Types͟, the Scenes by ͞Scene Types͟, and the Assets3D by ͞Assets Types͟.

The scene͛s objects 3D setup (positions, rotations, scalings) are saved in a json file of our

own protocol so that we can store in the MySQL database the scene. So, ...

1. each game project that belongs to a certain Game Project Type has scenes of certain

Scene Types,

2. each scene that belongs to a certain Scene Type has Assets3D of certain Asset3D

Types,

3. each Game Object in a Scene is an instance of an Asset3D, and

4. each Scene CPT has a metadata field where the scene 3D setup of the Game Objects

is saved in a simple json format.

For example, the structure for the ͞EA Wind Energy Lab͟ project is as follows:

1. ͞EA Wind Energy Lab͟ is an instance of Games Project CPT with taxonomy ͞Wind

Energy Lab͟

2. ͞Educational Scene 1͟ is an instance of Scenes CPT with taxonomy ͞Educational

Scene͟

3. ͞Wind Turbine͟ and ͞Solar Panel͟ are instances of Assets3D CPT with taxonomy

͞Energy Generator͟

4. ͞Solar Panel 1͟ is an instance of the Asset3D instance ͞Solar Panel͟

5. ͞Wind Turbine 1͟ and ͞Wind Turbine 2͟ are instances of Asset3D instance ͞Wind

Turbine͟

 D4.1 - Final

 Page 29

6. The ͞Educational Scene 1 json file͟ is a text file that it is saved in ͞Educational Scene

1͟ metadata field named as ͞Scene json͟.

Figure 3.5: Adopted logical connection between Game Projects, Scenes and Asset3D CPTs.

The currently available ͞Type͟ values are explained in Table 3.2. A Game Project has the

taxonomy Game Project Type which defines what kind of game will be developed. For the

selected case, the game project type takes the value Wind-Energy-Lab . The metadata

fields of the game project are title, description, longitude and latitude.

A Scene is a CPT that stores the game objects, namely their id, position, rotation, and scale.

Each game object is an instance of an Asset3D. The taxonomy of the Scene is named as

Scene Type and defines what type of scene will be developed. For the selected game, the

scene type value is Isometric and refers to the kind of games that are viewed from above

the ground, which are also called 3rd person view or bird͛s eye view games. Each taxonomy

value also has many fields where the template information is stored, i.e. pieces of Unity3D

code that will be described in Section 3.5.

An Asset3D is a CPT that has metadata fields such as title, description, obj (3D file), mtl

(material file), jpgs (texture files), and others depending on the taxonomy values of the

Asset3D. The taxonomy values terms also define the behavior of the asset in the game as

they contain YAML template code.

 D4.1 - Final

 Page 30

Table 3.2: Taxonomies and metadata fields for each CPT.

CPT Taxonomies Metadata fields

Game

Project

Game Project Type : a

taxonomy that defines what

kind of game will be made.

For the case of the game

examined it can take the

value ͞Wind-Energy-Lab͟

Title : The title of the game

Description : A description of the game

(optional).

Latitude : location latitude (optional)

Longitude : location longitude (optional)

Scene Scene Type : a taxonomy

that defines the kind of the

scene that will be made. For

the case of the game

examined, it can take the

value Isometric .

Title : The title of the scene

Description : A description of the scene

(optional)

Scene json : The scene is saved in a custom

json format for storing ids, position, rotation,

and scale of each object in the scene (see

Section 3.5).

Longitude : location longitude

Latitude : location latitude

Wind profile : a function defining the wind

direction, and intensity over a year

Cloud cover profile : a function defining the

presence of clouds in the area over a year

Temperature profile : a function defining the

temperature level over a year.

Asset3D Asset3D Type : A taxonomy

that defines

1. what fields this asset will

have

2. which template code to

use in order to construct an

instance of this asset when

inserting it into the scene

Asset3D type values for an

͞Isometric͟ scene of the

͞Wind-Energy-Simulation͟

game are:

a) Land terrain

b) Water

Standard fields

Title : the title of the asset

Description : the description of the asset

Varying fields depending on Asset3D type

taxonomy

a) Land terrain

1) Obj file: the mesh of the asset

2) Mtl file: the material definitio

3) Jpg file: mesh texture (multiple jpgs

allowed)

b) Water

1) obj file: Mesh of water

 c) Consumer of energy

 D4.1 - Final

 Page 31

c) Consumer of Energy (e.g.

a town or village)

d) Generator of Energy

(wind turbine, solar

panel, hydro-electric

power plant)

e) Point-of-Interest (POI)

Image-text

f) POI Video

 1) Obj file: mesh

 2) Mtl file: material

 3) Jpg texture file

 4) Consumption profile over a year: a

function that defines how much energy this

item consumes over time.

 d) Generator of energy

1) Obj file

2) Mtl file

3) jpg texture file

4) Energy production with respect to air

speed

5) Energy production with respect to solar

radiation

6) Energy production with respect to

water flow

3.4 Front-end interface

The front-end interface is GUIs that allow a user-friendly management of Game Projects,

Scenes, and Assets3D, targeting towards novice users with limited, or no, knowledge of

game authoring processes. The mockups and the first implementations for the GUI will be

discussed in the following.

The overall organization of the GUI is presented in Figure 3.6. Briefly, the user enters Screen

1 after successful login, which is the Game Project Manager that can be used to create or

edit an existing game. Next, the user enters Screen 2 which is the Scene Manager, which can

be used to create or edit an existing scene or compile the full game. If the user selects to

edit a scene, then Screen 3 appears, which is the Scene Editor screen. If the user selects to

create a new scene, then Screen 4 appears, which is the Scene Creator. If the user is in

Screen 3, and wants to upload a new game asset, then Screen 5 appears which is the

Assets3D Manager. These screens are described in greater detail in the following.

 D4.1 - Final

 Page 32

Figure 3.6: Mockups and overall organization of the front-end GUI.

3.4.1 Game manager

A mockup and a first implementation of the Game Project Manager are shown in Figure 3.7.

In this screen, the educator can create a new game project or edit an existing one. A game

project can be created by entering the title of the game project and the type of the game

project.

 D4.1 - Final

 Page 33

Figure 3.7: Mockup (top) and first design implementation (bottom) for creating a new game

and or editing an existing one.

 D4.1 - Final

 Page 34

3.4.2 Scenes Management

After the creation of the game, the educator is led to Scene Management screen (Screen 2)

as shown in Figure 3.8 (mockup and first implementation). In this interface, each scene of

the game is represented with a thumbnail, and if clicked the user can modify the respective

scene. A button, named ͞New Scene͟ allows to create a new scene, which will be further

described in Section 3.3.4.

Figure 3.8: Mockup (top) and first design implementation (bottom) for the scenes

management of a game.

 D4.1 - Final

 Page 35

3.4.3 Scene Editor

A mockup and a first implementation of the Scene Editor is shown in Figure 3.9. The

educator can upload a new Asset3D using the ͞Add new Asset͟ button, which is an option

available only for senior educators, and use the scene javascript 3D editor to manage the

Assets3D in the scene as it will be described in Section 3.5.

Figure 3.9: Mockup (top) and first design implementation (bottom) for the scene editor.

 D4.1 - Final

 Page 36

3.4.4 Scene Creator

The Scene Creator allows for a new scene to be created as shown in the mockup and first

implementation of Figure 3.10. The scene can be created by entering a name, type, and a

description of the scene.

 D4.1 - Final

 Page 37

Figure 3.10: Mockup (top) and first design implementation (bottom) for the scene creator

that allows to create a new scene.

3.4.5 Assets3D Manager

The Assets3D Manager screen is for creating new Assets3D and it is triggered when clicking

͞Add new Asset͟ in Scene editor. A mockup is shown in Figure 3.11. The educator provides a

title, the Asset3D type, 3D files (obj, mtl, textures), and fills other fields depending on the

Asset3D Type.

Figure 3.11: Mockup for creating an Asset3D.

3.5 Front-end Scene 3D editor

We have developed a web-based 3D editor to enable modifying a scene through a web-

browser. In order to achieve this fast, we used the three.js7 library that allows to develop 3D

graphic elements using HTML5 and WebGL through high level commands. Three.js allows

saving a scene in Json format where we have standardized our own format that serves the

need of converting the scene setup to Unity3D scene format. Further details about the json

format will be described in Section 3.6. A screenshot of the 3D editor can be seen in Figure

3.12. The Scene 3D editor consists of three parts, namely the 3D view of the Scene, the left

toolbar of parameters, and the right toolbar of available Assets3D.

7
 http://threejs.org

http://threejs.org/

 D4.1 - Final

 Page 38

Figure 3.12: A scene editor for the web using Three.js.

The main functionality of the 3D editor is to allow an educator to drag-n-drop Assets3D from

the toolbar on the right in the 3D view of the Scene. This action adds an instance of the

Asset3D to the scene. Multiple instances of the same Asset3D can exist in the scene, i.e.

multiple wind turbines. The educator can now edit the rotation, the position, and the scale

of an instance either through graphic elements (gizmos) or by entering numerical values for

a more accurate result in the left toolbar. Other functionalities supported are typical 3D

editing functionalities such as a) view the scene either in 3rd person view or 1st person view;

b) orbit, pan, or zoom to an object for a better angle view; and c) select object with

raycasting (click on 3D items).

The 3D editor, apart from the scene 3D editing functionalities, offers the functionality to

convert a WebGL scene into a json file. A WebGL scene is objects in the browser͛s memory

that are structured in a tree like format with parameters such as object name, translation,

rotation and scale. We have developed a json converter function that stores these

parameters in a json file with a protocol. We have defined our own as for the time being

there is no standard format for WebGL 3D scenes. If the educator enters the WebGL for a

second time, then the json file is read and the WebGL scene is recreated as it was saved the

last time. We decided to use json format instead of Unity3D YAML scene format because it

is more compatible with WebGL technologies such as Three.js. Only when the game is

compiled, this json scene is converted into Unity3D YAML scene as it will be described in the

following.

 D4.1 - Final

 Page 39

3.6 Conversion mechanism from WordPress to Unity3D game project

In order to compile a game, it should first be transformed from our WordPress format into

Unity3D project format. This conversion is a tedious procedure. However, we have managed

to check its feasibility. In order to explain the procedure, the structure of a Unity3D game

project should be analyzed.

3.6.1 Unity game project

In this section, we will described how a Unity3D project is structured and what settings

should be made in order for this project to be transformed into a WordPress template. The

language used in Unity3D is YAML (Yet Another Markup Language) resembling the XML a

lot. A Unity3D game project consists of two folders, namely ProjectSettings Folder and

Assets Folder.

ProjectSettings Folder contains 16 files in YAML format that store the game settings. In our

case, Edits should be done in two files, namely EditorBuildSettings.asset and

EditorSettings.asset. EditorBuildSettings.asset contains which scenes will be compiled in the

build of the game. These can be changed in the Unity3D Editor by going to menu -> File ->

build Settings, as shown in Figure 3.13. This file is the list of the scenes belonging to the

compiled game. The ͞WordPress Scene Manager͟ that we have developed modify this file

accordingly in order to incorporate all necessary scenes into the compiled game.

%YAML 1.1

%TAG !u! tag:unity3d.com,2011:

--- !u!1045 &1

EditorBuildSettings:

 m_ObjectHideFlags: 0

 serializedVersion: 2

 m_Scenes:

 - enabled: 1

 path:

Assets/MyScene_SceneFolder/MyScene_Scene.unity

 - enabled: 1

 path:

Assets/MyScene2_SceneFolder/MyScene2_Scene.un

ity

 Figure 3.13: Modifying Unity3D Editor build settings graphically (left) and textually (right).

EditorSettings.asset file contains settings such as allowing the game meta files to be visible

and all the files to be stored in text format instead of binary format. This is essential for

extracting YAML patterns of code, which will be used in our authoring tool. These patterns

are pieces of code where the value of the parameter is also parametrized by special

 D4.1 - Final

 Page 40

characters that our WordPress plugin is able to understand and replace with certain values.

In Unity3D Editor, these settings can be changed in menu -> edit -> preferences -> editor and

in the panel that will popup as the example shown in Figure 3.15 (left) by selecting ͞Version

Control͟ mode as ͞Visible Meta Files͟ and ͞Asset Serialization͟ as ͞Force Text͟. These

settings produce the EditorSettings.asset file inside the ProjectSettings folder, which is

shown on the right part of Figure 3.14.

%YAML 1.1

%TAG !u! tag:unity3d.com,2011:

--- !u!159 &1

EditorSettings:

 m_ObjectHideFlags: 0

 serializedVersion: 3

 m_ExternalVersionControlSupport: Visible Meta

Files

 m_SerializationMode: 2

 m_DefaultBehaviorMode: 0

 m_SpritePackerMode: 2

 m_SpritePackerPaddingPower: 1

 m_ProjectGenerationIncludedExtensions:

txt;xml;fnt;cd

 m_ProjectGenerationRootNamespace:

 m_UserGeneratedProjectSuffix:

Figure 3.14: Modifying the EditorSettings graphically (left) and textually (right).

The Assets Folder is the most important folder and it contains all the necessary assets for

constructing the game, namely Scenes, Scripts, Assets 3D, and Standard Assets (defaults by

Unity). Its structure is as follows. Each asset, folder or file, is escorted by a meta file that has

reference or settings information about the asset. In this manner the meta file defines the

identity of the asset. For Envisage, we propose to use a tree form as shown below where all

scenes are saved in one folder, all multimedia files in uploads folder, Standard unity assets in

a separate folder, and all custom scripts in a homonymous folder.

● Scenes

○ Scene1.unity

○ Scene1.unity.meta

○ Scene2.unity

○ Scene2.unity.meta

 D4.1 - Final

 Page 41

○ ….
● Uploads

● Asset3D 1 (folder)

○ Asset3D 1.obj

○ Asset3D 1.obj.meta

○ Asset3D 1.mat

○ Asset3D 1.mat.meta

○ texture.jpg

○ texture.jpg.meta

● Asset3D 2 (Folder)

 …...
 …….

● Standard Assets (folder)

● Standard Assets.meta

● GameScripts (folder)

○ script1.cs

○ script2.js

As can be seen above, each file, or folder, is escorted by meta file. If a file, or folder, is

moved to another directory then its meta file should be moved with it. In our case, the

WordPress plugin is responsible for generating accurate meta files. The structure of a meta

for a folder asset is as follows.

fileFormatVersion: 2

guid: 0425edc148da5504890f435baf6bbb6b

folderAsset: yes

timeCreated: 1481881843

licenseType: Free

DefaultImporter:

 userData:

 assetBundleName:
 assetBundleVariant:

where fileFormatVersion is 1 for Mac vs 2 for Windows. Guid (Graphic User Interface

Identifier) is a string of 32 characters that identifies uniquely the folder asset when Unity

constructs the ͞Project͟ panel, and timeCreated is the unix timestamp in secs from 1/1/1970

UTC.

Standard Assets Folder is a folder created automatically by Unity3D and stores common

assets that are often used in games. This folder should be copied as it is in each game

compilation.

 D4.1 - Final

 Page 42

Scene folder contains all the scene files and their meta in YAML format.

Uploads contains necessary 3D assets for a scene. The 3D assets are stored in folders where

three items are necessary, namely the 3D mesh stored in an obj file, the material of the

asset stored in a mat file and optionally the texture of the object stored in an jpg file.

jpg: it is the image representing the texture of a 3D object. It should always be rectangle

ǁith sizes at poǁer of Ϯ, i.e. ϲϰ,ϭϮϴ,Ϯϱϲ,ϱϭϮ …., up to ϴϭϵϮ. Although UŶityϯD supports also
png format, we have been restricted to jpg for better transfer times via the internet. The

first lines of the meta file of the texture is as follows (The file is too big showing many

texture details that are not necessary to present here. The most important line is the guid

string, which is the id of the texture file).

fileFormatVersion: 2

guid: 5c327651f9d4f8946a645bcdbfadc6c1

timeCreated: 1482232683

licenseType: Free

TextureImporter:

 fileIDToRecycleName: {}

 serializedVersion: 4

 mipmaps:

 mipMapMode: 0

 enableMipMap: 1

 sRGBTexture: 1

….

obj: It is a file in Wavefront file format, which is a text format for storing object meshes.

Although Unity3D supports various formats, we decided to use obj due to its simplicity and

universality. The most important lines of Obj meta file are as follows.

fileFormatVersion: 2

guid: 42aa2f61ccc79ff45914686b2622efd4

timeCreated: 1482234737

 materials:

 importMaterials: 1

 materialName: 2

 materialSearch: 2

mat: The material, i.e. color and texture, of the Obj mesh is saved in a mtl file. Unity3D

transforms automatically mtl into mat. An example is shown in the following lines where

m_Texture contains the id of the texture file and m_Colors contains the color of the texture.

 D4.1 - Final

 Page 43

--- !u!21 &2100000

Material:

 m_Name: floor-defaultMat

 m_Shader: {fileID: 46, guid: 0000000000000000f000000000000000, type: 0}

 m_ShaderKeywords: _EMISSION

 m_LightmapFlags: 1

 m_CustomRenderQueue: -1

 stringTagMap: {}

 m_SavedProperties:

 serializedVersion: 2

 m_TexEnvs:

 - first:

 name: _MainTex

 second:

 m_Texture: {fileID: 2800000, guid: 5c327651f9d4f8946a645bcdbfadc6c1, type: 3}

 m_Scale: {x: 1, y: 1}

 m_Offset: {x: 0, y: 0}

 m_Colors:

 - first:

 name: _Color

 second: {r: 0.38843808, g: 1, b: 0.33823532, a: 1}

js and cs are javascript and c-sharp scripts that define game rules, behaviors and others

inside the game.

Scene.unity is the most important file type since it contains information about which game

objects to construct and which assets to use for them. It also contains rendering

information, light, fog, occlusion settings etc. In details, first there are the settings of the

scene that do not depend on the game objects inside the scene, these are the Occlusion,

Render, LightMap, and NavMesh settings that are common entities in 3D environments.

Each item begins with ͞---- !u!yaml_class_id &fid͟ where yaml_class_id takes certain values

that specify the class of the object, and fid is the identifier of the object, which is unique in

the scene. This full class list can be found in Unity site8. An example of .unity file for the

aforementioned components is as follows:

%YAML 1.1

%TAG !u!

tag:unity3d.com,2011:

--- !u!29 &1

OcclusionCullingSettings:

8
 https://docs.unity3d.com/Manual/ClassIDReference.html

https://docs.unity3d.com/Manual/ClassIDReference.html

 D4.1 - Final

 Page 44

--- !u!104 &2

ReŶderSettiŶgs: …..
--- !u!157 &3

LightŵapSettiŶgs: …..
--- !u!196 &4

NaǀMeshSettiŶgs: ……

Next, is the light game object. One scene can have multiple lights. For open space scenes,

where the only source of light is the sun (DirectionalLight), the light consists of a

GameObject (wrapper container), the Light (type of light), and Transform (position and

orientation) as follows.

--- !u!1 &5

GameObject:

 serializedVersion: 5

 m_Component:

 - component: {fileID: 7}

 - component: {fileID: 6}

 m_Name: Directional Light

 m_IsActive: 1

--- !u!108 &6

Light:

 m_GameObject: {fileID: 5}

 m_Type: 1

 m_Color: {r: 1, g: 0.95686275, b: 0.8392157, a: 1}

 m_Intensity: 1

 m_Range: 10

 m_SpotAngle: 30

 m_Shadows:

 m_Type: 2

 ….
 m_Bias: 0.05

 m_NormalBias: 0.4

 m_NearPlane: 0.2

 m_BounceIntensity: 1

--- !u!4 &7

Transform:

 m_GameObject: {fileID: 5}

 m_LocalRotation: {x: 0.40821788, y: -0.23456968, z: 0.10938163, w: 0.8754261}

 m_LocalPosition: {x: 0, y: 3, z: 0}

 m_LocalScale: {x: 1, y: 1, z: 1}

 D4.1 - Final

 Page 45

 m_LocalEulerAnglesHint: {x: 50, y: -30, z: 0}

The aforementioned game objects will be fixed in the scene. The educator, however, should

be able to insert various new game objects when constructing each scene. These game

objects should be customly pre-defined according to the following.

3.6.2 Predefined game object types

Each scene should contain a variety of game objects. These game objects should obtain a

behaviour of a predefined class, named as taxonomy value. Thus, if the educator selects a

taxonomy value for a new game object, automatically the game object inherits the

properties of the taxonomy value class.

An example for the Asset3D Type ͞Land terrain͟, is described in the following. If assuming

that a json scene contains an instance of Asset3D of the type ͞Land Terrain͟. Then

myScene.json file should be converted into myScene.unity. The myScene.json file contains

several game objects but if focusing only to our ͞Land Terrain͟ game object the conversion

is as follows.

Our json game object has several fields, such as:

● id_instance=115231 (uniquely identifies the game object instance in the scene);

● id_asset3Dtype=15 (identifies the Asset3D type of the instance) ;

● id_mesh=155. (id of the mesh resource from WordPress to use for the 3D object);

● translation_XYZ (position vector);

● rotation_XYZ (rotation vector);

● scale (float value uniform for all dimensions).

The first thing is to take the the YAML code snippet from the Asset3D Type taxonomy meta

for the Asset3D Type = 15 which is:

--- !u!1 &___[landterrain_fid]___ stripped

GameObject:

 m_PrefabParentObject: {fileID: 100000, guid: ___[landterrain_guid]___, type: 3}

 m_PrefabInternal: {fileID: ___[landterrain_prefab_fid]___}

--- !u!64 &___[landterrain_meshcol_fid]___

MeshCollider:

 m_ObjectHideFlags: 0

 m_PrefabParentObject: {fileID: 0}

 m_PrefabInternal: {fileID: 0}

 m_GameObject: {fileID: ___[landterrain_fid]___}

 m_Material: {fileID: 0}

 m_IsTrigger: 0

 m_Enabled: 1

 serializedVersion: 2

 D4.1 - Final

 Page 46

 m_Convex: 0

 m_InflateMesh: 0

 m_SkinWidth: 0.01

 m_Mesh: {fileID: 4300000, guid: ___[landterrain_guid]___, type: 3}

--- !u!1001 &___[landterrain_prefab_fid]___

Prefab:

 m_ObjectHideFlags: 0

 serializedVersion: 2

 m_Modification:

 m_TransformParent: {fileID: 0}

 m_Modifications:

 - target: {fileID: 400000, guid: ___[landterrain_guid]___, type: 3}

 propertyPath: m_LocalPosition.x

 value: ___[landterrain_pos_x]___

 objectReference: {fileID: 0}

 - target: {fileID: 400000, guid: ___[landterrain_guid]___, type: 3}

 propertyPath: m_LocalPosition.y

 value: ___[landterrain_pos_y]___

 objectReference: {fileID: 0}

 - target: {fileID: 400000, guid: ___[landterrain_guid]___, type: 3}

 propertyPath: m_LocalPosition.z

 value: ___[landterrain_pos_z]___

 objectReference: {fileID: 0}

 - target: {fileID: 400000, guid: ___[landterrain_guid]___, type: 3}

 propertyPath: m_LocalRotation.x

 value: ___[landterrain_rot_x]___

 objectReference: {fileID: 0}

 - target: {fileID: 400000, guid: ___[landterrain_guid]___, type: 3}

 propertyPath: m_LocalRotation.y

 value: ___[landterrain_rot_y]___

 objectReference: {fileID: 0}

 ...

 - target: {fileID: 400000, guid: ___[landterrain_guid]___, type: 3}

 propertyPath: m_LocalScale.x

 value: ___[landterrain_scale_x]___

 objectReference: {fileID: 0}

 - target: {fileID: 400000, guid: ___[landterrain_guid]___, type: 3}

 propertyPath: m_LocalScale.y

 value: ___[landterrain_scale_y]___

 objectReference: {fileID: 0}

 ...

 objectReference: {fileID: 0}

 - target: {fileID: 100002, guid: ___[landterrain_guid]___, type: 3}

 propertyPath: m_Name

 value: ___[landterrain_name]___

 objectReference: {fileID: 0}

and replace all the WordPress keywords that begin from ͞___[͞ and end with ͞]___͟ with

 D4.1 - Final

 Page 47

information from json file. For example, the ___[landterrain_pos_y]___ takes the value of

translation_XYZ(1).

Concluding, the Unity3D game project specifications are as follows:

1. Game projects should be saved in text format but not binary;

2. Each game object should be referenced with its name. Tags are avoided to lower

complexity;

3. Each asset (obj, mtl, textures) should be saved in a folder (asset folder);

4. Each scene should be saved in a separate folders and all the assets of the scene

should be stored within this folder in asset folder. Therefore a tree form structure is

secured.

5. All game scripts should be saved in a root folder named as ͞Scripts͟;

6. the paths of the files are not saved anywhere, instead each file or folder is escorted

with a .meta file, which stores various ids for the file or folder, that are used when

constructing the scene by each scene file, e.g. by myScene.unity.

3.6.3 Compiling a Unity3D game project to a game

The game project should be compiled into a game binary or web format. This is allowed

through the following command:

"C:\Program Files\Unity\Editor\Unity.exe" -quit -batchmode -logFile stdout.log -

buildWindowsPlayer "builds\mygame.exe"

where

- ͞Unity.exe͟ is the compiler.

- ͞stdout.log͟ is the file, where all the messages during compilation are written. This file can

be read sporadically with ajax to make a progress bar in the web client. It can also inform

the curator that there is no problem in compilation. If any problem arises, it can be also

shown.

- ͞buildWindowsPlayer͟ is a parameter denoting that the target platform is windows. It can

be Mac, WebGL, Playstation, Xbox, Android etc.

- ͞Builds\mygame.exe͟ is the game binary. Together another folder is made with data

named: ͞mygame_data͟, which is also necessary for the game to run. The folder and the exe

have to be zipped into one file and a link should be sent to the user to download the zip file.

 D4.1 - Final

 Page 48

4. Analytics metrics injection for the game feedback mechanism

In this section, the implementation architecture of the shallow analytics is described briefly

in order to ensure concordance with all the modules of the architecture. More details can be

found in D2.1 where each shallow analytics module is thoroughly described.

Shallow Analytics architecture design is shown in Figure 4.1. It consists of two components,

namely:

a) Shallow analytics server: The server will be hosted in Amazon Web Services that

provide technologies for high traffic, storage, security and maintenance at low cost.

The components of Shallow Analytics server are as follows:

i) API IN: collects game analytics and deep learning analytics data through a

server. Actually, it is code written in PHP or JAVA that allows metrics data to

enter the server. It has the form of a url link.

ii) Data Aggregation: refers to temporary storage of data in NoSQL in order to

be buffered for batch process; enriched data with geo-location inferred from

IP; enriched data with demographics inferred from location; enriched data

with login information such as calculated sessions.

iii) Data Augmentation: the augmentation of data with incoming data. It is first-

level features estimation from the aggregated data in order to be used from

Deep Analytics Server for visualizations or for second-level features

estimation.

iv) DB: the storage of data into a database. It stores the raw, the aggregated, and

the augmented data in a database based on DynamoDB technology.

v) API OUT: the construction of an API server for sending the data to the Deep

Analytics Server for extracting meaningful information for the educators or to

the game authoring tool for the visualization of game analytics. Actually, it is

code written in PHP or JAVA that allows metrics data to exit the server

securely in order to be used from the Deep Analytics server or the game

authoring tool. It has the form of a url link.

b) Metrics: code for tracking user activities in the virtual Labs:

i) a Unity3D plugin named as GIO SDK will be used to place metrics tracking

functions in appropriate positions such as starting the scene, ending the

scene etc. This will be described further later in this section.

ii) the code triggers calls carrying metrics data to the API IN through http. The

code will be written either as C++ or Javascript since Unity3D supports both

languages.

 D4.1 - Final

 Page 49

Figure 4.1: The architecture of the Shallow Analytics server.

As regards tracking code, the game should be able to track:

● How much time the learner spends in reading the instructions of the game with

two tracking points such ͞InitiateStartScene͟, ͞TerminateStartScene͟ that

provide timestamps information

● Assess whether the student understands the value of the different parameters

with Tracking points:

○ ͞OpenConfigurationPanel͟ and ͞CloseConfigurationPanel͟

■ How many times when into the ConfigurationPanel

■ How much time it spent in each case

○ ͞StartSimulation͟, ͞ReplaySimulation͟ and ͞EndSimulation͟,

■ How many times when into the ConfigurationPanel

■ How much time it spent in each case

● Assess whether the student can optimize the generation-consumption trade-off

with a pre-set configuration for the parameters found with tracking points:

○ ͞AddTurbine͟, ͞TurnOffTurbine͟, ͞RepairTurbine͟ -> Tracked on user-

clicks

○ ͞UnderPower͟, ͞OverPower͟, CorrectPower͟ -> Tracked the evaluation

output every 5 seconds.

○ ͞StartSimulation͟ and ͞EndSimulation͟

 D4.1 - Final

 Page 50

5. Architecture for extracting deep analytics and visualizing shallow

and deep analytics

In this section, we describe the architecture design of the components used to visualize

shallow analytics and deep analytics to educators while using the virtual Lab game authoring

tool. The architecture is described in Figure 5.1. Here we provide only an overview. Details

on the deep analytics and visualizations can be found in D2.3.

Deep learning analytics values, e.g. the outcomes of particular models, are calculated using

the scikit-learn machine learning library and a range of custom scripts leveraging this library.

The machine learning deep analytics service is served using the Flask microserver framework

for python. The Deep Analytics data are stored back on the Shallow Analytics server. The

visualization code in the Master Server draws data produced from shallow and deep

analytics operating. The visualizations, deemed useful for educators, are rendered using the

D3.js visualization inside the Scene Editor of the WordPress plugin. Some calculations that

produce values that are ephemeral and/or only locally relevant, such as filtering, splitting,

scaling, other forms of normalization, and sorting of values are carried out on the client-side

in the end user͛s browser, using JavaScript implemented as part of the D3.js visualizations.

Figure 5.1: The Deep Analytics Server with respect to other servers.

Below, in Table 5.1, we provide an overview of the libraries involved for the Deep Analytics

server and the visualizations in the Master server.

Table 5.1: Overview of the technologies for deep learning and visualization.

Library/software solution Website/repository License

D3.js https://d3js.org/ BSD-3-Clause

https://d3js.org/
https://opensource.org/licenses/BSD-3-Clause

 D4.1 - Final

 Page 51

Flask http://flask.pocoo.org/ BSD-3-Clause

scikit-learn http://scikit-learn.org/ BSD license (version

unspecified)

python https://www.python.org/ PSF License

6. Architecture summary

In the past, several attempts to make educational games were discontinued due to the lack

of an appropriate architecture that would be self-sustained and commercially viable. We

propose an architecture that reduces the interference of a programmer or a game designer

in the pipeline as much as possible. We provide the educators with a tool to make their own

games, improve them, and maintain them. This significantly lowers the cost, since the

programming effort is very expensive for 3D games.

The virtual lab game authoring tool allows for a great number of extensions either in the

existing Wind-Energy-Simulation lab or any other newly introduced lab because it is based

on the notion of a game template. The existing template allows for several objects to be

inserted into the system dynamically, allowing the games to be highly customized by

educators. The template, thus, can be transformed from ͞Wind Energy Simulation͟ to a

more general ͞Energy Simulation͟ template by inserting other energy assets such as hydro-

electric generators, photovoltaic elements. New terrains can be inserted from google maps

simulating real physical places. Furthermore, the overall architecture is not limited to certain

one type of lab but it can be extended for other types of labs by developing a new template.

A high level of usability is achieved with the proposed game authoring tool for the

educators. By hiding unnecessary complexities, it is a user-friendly tool for modifying

Unity3D games remotely through a web-browser. Analytics are already injected into the

game objects, allowing for seamless integration. Visualization of analytics near the scene

editor allows for the educator to do the necessary modifications in order to further improve

the game in a efficient manner.

The adopted architecture, based on WordPress and Unity3D commercial software, is a novel

architecture that adds value upon already widespread tools to achieve a high probability of

commercialization. This commercialization can be achieved through a) selling the access of

the game authoring tool to educational organizations; b) selling the platform itself to

companies that wish to start selling the service to educators; c) making new templates to

support functionalities of other kinds of virtual labs; d) selling the authoring tool to

WordPress sites; and e) sell the plugin in the Unity3D Asset Store.

http://flask.pocoo.org/
http://flask.pocoo.org/docs/0.12/license/#flask-license
http://scikit-learn.org/
http://scikit-learn.org/stable/documentation.html
http://scikit-learn.org/stable/documentation.html
https://www.python.org/
https://docs.python.org/3/license.html

 D4.1 - Final

 Page 52

7. References

D1.1, ͞Educational scenarios and stakeholder analysis,͟ Envisage project deliverable, Apr.

2017.

D1.2, ͞Data structure and functional requirements,͟ Envisage project deliverable, Feb. 2017.

D2.2, ͞User profiling and behavioral modeling based on shallow analytics,͟ Envisage project

deliverable, May 2017.

D2.3, ͞Visualization strategies for course progress reports͟, Envisage project deliverable,

May 2017.

Prensky, Marc. "Fun, play and games: What makes games engaging." Digital game-based

learning 5 (2001): 1-05.

	1. State of the art review for educational games authoring
	1.1 High Appealing educational games for kids
	1.2 Existing game authoring tools
	1.3 Trendy Technologies
	1.4 “Living Lab” approach
	1.5 User friendly for the teacher
	1.6 Generic authoring tool

	2. Requirements from the use case scenario
	2.1 Shared high-level structure across generated games
	2.2 Content requirements and technical specifications inferred from the “Wind Energy Simulation” lab
	2.3 What the game authoring tool should be able to change.
	2.4 Hardware specifications

	3. Architecture and interfaces design
	3.1 Introduction to the implementation pipeline
	3.2 Architecture design
	3.3 Definition of game entities
	3.4 Front-end interface
	3.4.1 Game manager
	3.4.2 Scenes Management
	3.4.3 Scene Editor
	3.4.4 Scene Creator
	3.4.5 Assets3D Manager

	3.5 Front-end Scene 3D editor
	3.6 Conversion mechanism from WordPress to Unity3D game project
	3.6.1 Unity game project
	3.6.2 Predefined game object types
	3.6.3 Compiling a Unity3D game project to a game

	4. Analytics metrics injection for the game feedback mechanism
	5. Architecture for extracting deep analytics and visualizing shallow and deep analytics
	6. Architecture summary
	7. References

