
D4.2 - Final

ENhance VIrtual learning Spaces using Applied Gaming in
Education

H2020-ICT-24-2016

D4.2 - First Version of the “Virtual Labs”
authoring tool

Dissemination level: Public (PU)

Contractual date of delivery: Month 7, 30th April, 2017

Actual date of delivery: Month 10, 28st July , 2017

Workpackage: WP4 - Virtual labs authoring tool

Task: T4.2 – Implementation of the virtual labs authoring tool with
generalizable templates

Type: Demonstrator

Approval Status: Final for submission

Version: 0.9

Number of pages: 62

Filename: D4.2_FirstVersionVirtualLabsAuthoringTool.docx

Abstract: The “Virtual labs authoring tool” is a plugin for WordPress that allows educators to
design experiments with an easy to manipulate graphic user interface. The educators are
able with drag-n-drop functionalities to design the experiment in 3D space and allow the
learner to play and learn. The authoring tool has an interface in a web browser (web page)
that it is able to generate virtual labs in a certain game engine, i.e. Unity3D. These games can
be compiled either for Web or for desktop use. They are available through a link or they can
be downloaded to be installed in a another server or desktop. The aforementioned
procedure is achieved through game project templates that are split into pieces of code to
re-design a new game. These templates have the necessary metrics measurement
mechanisms embedded that monitor a learners’ behavior and communicate to the game
and visual analytics components as defined in WP2 and WP3.
The information in this document reflects only the author’s views and the European Community is not liable for any use
that may be made of the information contained therein. The information in this document is provided as is and no
guarantee or warranty is given that the information is fit for any particular purpose. The user thereof uses the information
at its sole risk and liability.

Page 1

Ref. Ares(2017)3799085 - 28/07/2017

D4.2 - Final

Co-funded by the European Union

Acknowledgment

This work is part of project ENVISAGE that has received funding from the European Union’s
Horizon 2020 research and innovation programme under grant agreement No 731900.

Page 2

D4.2 - Final

Copyright

© Copyright 2017 ENVISAGE Consortium consisting of:

1. ETHNIKO KENTRO EREVNAS KAI TECHNOLOGIKIS ANAPTYXIS (CERTH)

2. UNIVERSITA TA MALTA (UOM)

3. AALBORG UNIVERSITET (AAU)

4. GOEDLE IO GMBH (GIO)

5. ELLINOGERMANIKI AGOGI SCHOLI PANAGEA SAVVA AE (EA)

This document may not be copied, reproduced, or modified in whole or in part for any
purpose without written permission from the ENVISAGE Consortium. In addition to such
written permission to copy, reproduce, or modify this document in whole or part, an
acknowledgement of the authors of the document and all applicable portions of the
copyright notice must be clearly referenced.

All rights reserved.

Page 3

D4.2 - Final

History

Version Date Reason Revised by

v0.1

29/5/2017 Initial draft with Table of
Contents

Dimitrios Ververidis, Stathis
Nikolaidis

v0.2 5/7/2017 Categories and fields for each
game Asset3D

Dimitrios Ververidis

v0.3 11/7/2017 New screenshots D.V.

v.0.4 14/7/2017 Section 1 and Section 2 almost
completed

D.V., A. Papazoglou, S.
Nikolaidis

v.0.5 19/7/2017 Sections 1, 2, and 3 almost
completed

D.V.

v.0.8 25/7/2017 Sections 1,2,3, and executive
summary completed. GIO and
UoM are inserting content in
4,5, and 6

D.V, Christoffer Holmgard,
Fabian Hadiji, Marc Mueller

v.0.9 28/7/2017 All sections are completed
and reviewed from internal
reviewers. Reviewers changes
were acknowledged.

DV, CH, FH, MM

Author list

Organization Name Contact Information

CERTH Dimitrios Ververidis (DV) ververid@iti.gr

CERTH Stathis Nikolaidis (SN) stathis.nikolaidis@iti.gr

CERTH Anastasios Papazoglou - Chalikias (AP) tpapazoglou@iti.gr

UoM Christoffer Holmgard (CH) holmgard@gmail.com

GIO Marc Mueller (MM) marc@goedle.io

GIO Fabian Hadiji (FH) fabian@goedle.io

Page 4

D4.2 - Final

Executive Summary

In this deliverable we describe the developments towards a user-friendly platform that can
generate virtual labs through high quality game engines and web interfaces. In the previous
deliverable (D4.1 Architecture design) we presented our idea which is briefly to employ
WordPress in order to develop a new editor for Unity3D game engine. This editor hides all
the programming details from educators and allows them to build educational game
projects through their web browser. The game projects are compiled by Unity3D game
engine and the game output is a high quality product for WebGL, desktop, consoles, or
mobile devices. The whole procedure is based on game project templates that incorporate
high level organization to allow object behavior inheritance. In D4.1, we have provided the
feasibility study of the attempt and some mockups, whereas here we provide quality
assurance and augmentation through the implementation of several features, visualizations
and structural improvements.

The structure of the developed virtual labs authoring tool is 3 dimensional as it allows first
the generation of multiple instances of game projects, e.g. Energy Lab A, Energy Lab B, etc.;
second, the generation of multiple versions per game project, e.g. Energy Lab A v1, Energy
Lab A v2, etc.; and third, the extension of game project types, e.g. Energy Lab, Chemistry
Lab, etc. Although, we focus only on Energy Labs in this deliverable, we provide evidence
that a second type of labs is plausible and it will be delivered in the next deliverable.

Significant help towards the development of the second dimension, i.e. the versions of each
lab, is provided through the use of the developed shallow analytics that are injected
seamlessly and a priori in the games during their generation. Their feedback is augmented
with several metrics plus the output of machine learning algorithms and visualized in the
virtual labs authoring tool to allow educators to obtain an automatic tool for advice.

All code repositories are public available under github organization ENVISAGE-H2020:

https://github.com/Envisage-H2020

 The main repository is the ‘Virtual-Labs-Authoring-tool’ which is a plugin for WordPress.

Page 5

https://github.com/Envisage-H2020

D4.2 - Final

Abbreviations and Acronyms

CMS Content Management System

API Application Program Interface

GUI Graphic User Interface

JSON JavaScript Object Notation

WebGL Web Graphics Language

SDK Software Development Toolkit

MAT Unity3D Material file format

OBJ Wavefront Object file format

MTL Wavefront Material file format

Page 6

D4.2 - Final

Table of Contents

1. Introduction to the architecture and the interfaces 9

1.1 Amendment to original architecture 11

2. Virtual labs authoring tool 14

2.1 Front-end interface 14

2.1.1 Game Project Manager 15

2.1.2 Scenes Manager 15

2.1.3 Scene Editor 16

2.1.5 3D Asset Manager 19

2.2 Wordpress Back-end 20

2.2.1 Game Projects 21

2.2.2 Scenes 24

2.2.3 Assets 3D 25

2.3 Assembling and compiling 29

3. Alignments with the use cases 34

3.1 How a generated game looks like 34

3.2 What the educator can do with the Virtual labs authoring tool using the “Energy” lab
template 39

3.3 Learner actions allowed in the produced games 44

3.4 Hardware specifications 46

4. Gathering data for shallow analytics 47

Updated Tracking Concept 48

Identifying Learners recurrently 49

Non profit distribution of the SDK 50

5. Injecting analytics and its data into the authoring tool 51

5.1 Direct Online Data Access 52

5.2 Cached Data Access 53

5.3 Data Access via Third-Party 54

6. Visualization of Deep and Shallow Analytics 55

Page 7

D4.2 - Final

6.1 Measured Data 56

6.2 Software libraries used 56

Running the visualization, shallow and deep analytics stack 57

References 59

Appendix I: Assets files 60

Appendix II: Compiling commands for desktop binaries. 62

Page 8

D4.2 - Final

1. Introduction to the architecture and the interfaces

The basics of the architecture that was defined in D4.1 will be outlined in order to provide
an insight about the implementation of the described prototype. The ENVISAGE approach is
to connect two dominating technologies in two separate fields, namely WordPress for web
based content management systems, and Unity3D for game authoring. Here, WordPress is
used to generate Unity3D game projects (Virtual labs game project) with an user-friendly
interface for totally novice users, and then compile it with the Unity3D game engine in
WebGL format.

The overall structure of the architecture is shown in Figure 1.1. The educator uses a web
browser and enters the web page of the virtual labs authoring tool which is hosted in a
WordPress site. In technical terms, the virtual labs authoring tool is a WordPress plugin that
can be used by everybody to be installed in their website and transform the website into a
game creation tool. This most prominent feature of this plugin is to allow creating game
projects, scenes, and assets by defining their behavioral category, uploading the 3D models
(for Assets only), and defining some field values. This categorization of the entities allows
the entity to inherit a behavior from its category (taxonomy in WordPress language) and
thus hiding unnecessary details from the game author. For already deployed games,
visualization of game analytics inside the plugin allow the game authors to view the players’
behavior and so as to re-design the game. Upon the game is re-designed, it can be compiled
with the plugin which utilizes the Unity3D game engine for exporting into WebGL language.
The game can be played from the web server or it can be downloaded to be placed in
another server.

Figure 1.1: Virtual Labs game authoring tool is a WordPress plugin at a server containing
Unity3D.

The overall architecture of the plugin is shown in greater detail in Figure 1.2. The backbone
of the system are three servers, namely a) the “Master Server” that contains the

Page 9

D4.2 - Final

functionalities for authoring games, i.e. the “Virtual labs game authoring tool”, b) the
“Shallow Analytics Server” that collects-stores-aggregates-augments raw game analytics,
and c) the “Deep Analytics Server” that processes the game analytics of the “Shallow
Analytics Server” and ports the results to the “Master Server” as feedback for educators.

Figure 1.2: Second diagram of the architecture that displays logical components in greater
detail.

The Wordpress plugin has the following main functionalities:

1) Provide a front-end web interface that allows the educators to login, create or edit a
game project. This front-end is shaped through developed page templates that
provide the required functionalities. There is also a back-end, which however is used
only by programmers for testing and debugging purposes because it does not have
the required level of usability. More details about the front-end and the back-end
can be found in Section 2.

2) Manage the logical entities of the games such as Games, Scenes, and Assets 3D.

Page 10

D4.2 - Final

These entities are stored in the MySQL database schema or in an assets folder if
there are big 3D files.

3) Assembly the Unity3D game project (YAML).
4) Compile the Unity3D game compiler, and provide the game as a link for sharing.

The “Shallow Analytics Server” provides the following functionalities:

1) Provide an API to receive analytics data from games (API IN). The compiled games
will already have metrics functionalities embedded from the game template and they
will be automatically connected with the API IN through the HTTP protocol. Also the
API IN allows for processed Deep Learning Analytics to be received and stored in the
Shallow Analytics Server.

2) Aggregate and augment raw data (see Section 5).
3) Store analytics data in a database schema.
4) Provide an API for sending analytics data to the Deep Analytics Server or to the

Master Server (API OUT).

The “Deep Analytics Server” provides the following functionalities:

1) Provide an API for receiving analytics data from the Shallow Analytics Server (API IN).
2) Estimate features on analytics data that have meaningful information.
3) Process features with machine learning techniques in order to extract a meaningful

pattern.
4) Provide an API for sending processed learner analytics data to the Shallow Analytics

Server in order to be stored. These analytics will be used by the educator, through
proper visualizations, to modify the game.

A typical scenario is as follows. A senior educator enters the front-end of the “Virtual labs
authoring tool” and creates a new Game Project. The project has automatically some scenes
inside, such as the “Main menu”, “Login”, “Help”, “Credits”, “Options”, “SceneSelector”, and
one empty “Educational Scene”. The “SceneSelector” scene is where the user can select
among several “Educational Scenes”. The senior educator then uploads the necessary assets
of the scene, e.g. for WindEnergyLab these are terrains, wind turbines, buildings, various
scenery decorations. For each Asset, the educator defines their category and their
parameters. Then, a simple educator edits the first Educational Scene or creates new
Educational scenes for editing. A scene can be edited by placing certain assets to certain
positions, or modify some parameters of the Assets, e.g. average Wind speed.

The game project is then compiled to a game and it is disseminated to the learners. After
some time, a simple educator enters the front-end, examines the games analytics and
accordingly makes the necessary changes in order to improve the game. The difference
between the senior educator and the simple educator is that the simple educator does not
have to upload any scene assets as all assets will be already uploaded. The game is then
compiled again and a new version is disseminated. This cycle goes on until the game
achieves the educational target.

Page 11

D4.2 - Final

1.1 Amendment to original architecture

As regards the internal organization of the architecture, we have made a parallax of the
original architecture that allows the game authoring to be more flexible. In D4.1, we had
proposed an architecture in WordPress that almost meets the architecture of Unity, which
is outlined in Figure 1.3. Namely, each “Game Project” is a CPT (custom post type) that has
the taxonomy “GameProjectType” which defines the kind of “Game Project”, e.g. Wind
Energy, Chemistry etc. Each Game Project consists of Scenes. Scenes are defined also as a
CPT with two taxonomies, namely a) ParentGame, which defines to which Game Project this
scene belongs to, and b) SceneType that defines the kind of the scene, e.g. “Main Menu”,
“Help”, “Educational Simulation Scene”, etc. Assets3D were defined also as CPT that had two
taxonomies, namely a) ParentScene, i.e. the scene that the Asset3D belongs to, and b)
BehaviorType, that defines the behavior of the Asset3D, e.g. Terrain, Energy Producer,
Energy Consumer, etc. The user can drag and drop an Asset3D to a scene, in order to be
instantiated, and each scene is saved in a json file. However, this structure caused duplicates
in Assets3D, because the Assets belonged to Scenes, and in every Scene, the user had to
upload the same Asset3D again in order to be available for the Scene. Therefore we have
made a change that it is shown in Figure 1.4. Now each Asset3D belongs straight to a Game
Project. This allows all the Assets3D to be available to all the Scenes of the Game Project,
and therefore, to avoid duplicates. Now, the Asset3D has also two taxonomies but the first
differs, namely the first is a) the Game Project that the Asset3D belongs to, and the second
is the same, namely b) the BehavioralType that defines the type of the Asset3D.

Page 12

D4.2 - Final

Figure 1.3: Original architecture of the wordpress plugin. Each Asset3D belonged to a Scene.

Page 13

D4.2 - Final

Figure 1.4: New architecture. Now, each Asset3D belongs to a Game Project.

Page 14

D4.2 - Final

2. Virtual labs authoring tool

The virtual labs authoring tool consists of three components, namely a) the front-end that
shows simple visualizations to the educators in order to author games, b) the back-end that
shows advanced visualizations to administrators of the website and how to define new
Game Project, Scenes, and Assets3D taxonomies, and c) the assembler-compiler that
combines all Game Scenes, Assets and Settings into a Unity3D project and compiles it into a
game. These components will be outlined next.

2.1 Front-end interface

The front-end interface is a user-friendly Graphical User Interface (GUI) that allows the
management of Game Projects, Scenes, and 3D Assets, effectively targeting novice users,
that have limited or no knowledge of game authoring processes. The overall organization of
the GUI is presented in Figure 2.1.

Firstly, after successfully logging in to the website, the user enters the Game Project
Manager screen that offers functionality to create a new game, and edit or delete an
existing game. Next, the Scenes Manager screen is shown, in which an existing scene can be
edited or deleted, and a new scene can also be created. There is a link to the 3D Asset
Manager screen and if desired, the user can compile the full game from this screen.

If the user selects to edit a scene, then the Scene Editor screen appears, with contents that
depend on the type of scene. For 2D scenes a form is shown that the user can submit to
change its data. For 3D scenes a fully functional 3D editor is show so that the user can
spatially manipulate and arrange 3D assets in a plane. All screens are described in greater
detail in the subsequent sections that follow.

Figure 2.1: Overall organization of the front-end GUI.

Page 15

D4.2 - Final

2.1.1 Game Project Manager

An implementation of the Game Project Manager is shown in Figure 2.1. In this screen, the
educator can create a new game project and delete or edit an existing one. To access a
preexisting project, the educator must click on one of the list entries at the left Projects
section. There is also a delete button that creates a warning popup window to make sure
that the educator really wants to delete this project. A new game project can be created by
entering the title of the game project and by selecting its type. When clicking on the CREATE
button, a new game is successfully created and the educator is transported to the Scenes
Manager screen.

Figure 2.1: Implementation of the Game Project Manager

2.1.2 Scenes Manager

As shown in Figure 2.2, in this interface each scene of the game is represented as a card.
Each card has a thumbnail of the scene that also serves as a link to the scene editor, a scene
title, a description and two buttons for the edit and delete scene functionalities. There are
some scenes that the game project manager creates by default. These scenes are required
and cannot be deleted so the delete functionality is disabled, although all scenes that are
created by the educator are deletable.

In this screen there is also the ‘Compile Game’ button that when clicked initiates the
compilation process of the whole game. A new screen appears that allows the educator to
compile the game in various formats such as WebGL, Windows, Mac, or Linux. Upon
successful compilation a link is provided to download the game in zip format. For WebGL
games, a second link also appears to play the game in the web browser.

By clicking on the ‘Add New Scene’ button, a new section expands that enables the creation
of a new scene by filling in the necessary information. This information includes a title, a

Page 16

D4.2 - Final

description and an image that serves as a scene thumbnail.

Figure 2.2: Implementation of the scenes manager.

2.1.3 Scene Editor

When the scene that is being edited is two-dimensional, the 2D scene editor launches that is
in fact a form with fields that vary according to the scene. A 2D scene editor implementation
screenshot can be found in Figure 2.3.

Page 17

D4.2 - Final

Figure 2.3: Scene editor screen for 2D scenes.

If the scene that is being edited is three-dimensional then the 3D scene editor launches.

We have developed a web-based 3D Editor to enable modifications of a scene through a
web-browser. In order to achieve this fast, we used the three.js library that allows to 1

develop 3D graphic elements using HTML5 and WebGL through high level commands.
Three.js allows saving a scene in the JSON format where we have standardized our own
custom structure that serves the need of converting the scene setup to the Unity3D scene
format. A screenshot of the 3D editor can be seen in Figure 2.4.

Figure 2.4: A scene editor for the web using Three.js.

The 3D Editor screen consists of three basic parts, namely the 3D view of the Scene where

1 http://threejs.org

Page 18

http://threejs.org/

D4.2 - Final

the user can manipulate 3D objects on a plane, the left panel that features controls and
editable parameters of each selected object, and a right panel where all available 3D assets
are listed and can be dropped inside the 3D plane, edited or deleted. There is also a search
function for the scenarios where one Game Project has numerous 3D assets.

The main functionality of the 3D editor is to allow an educator to drag and drop 3D assets on
the 3D plane. This action adds an instance of the 3D asset to the scene. Multiple instances of
the same asset can exist in the scene, i.e. multiple wind turbines. The educator can edit the
rotation, position, and scale of an instance either through GUI controls (gizmos) or by
entering numerical values for a more accurate result in the left panel. Other functionalities
supported are typical 3D editing functionalities such as a) view the scene either in 3rd
person view or 1st person view; b) orbit, pan, or zoom to an object for a better angle view;
and c) select object with raycasting (click on 3D items).

The 3D editor, apart from the editing functionalities, can convert a three.js scene into a
JSON file. A three.js scene is comprised of objects in the browser’s memory that are
structured in a tree like format with parameters such as object name, translation, rotation
and scale. We have developed a JSON converter function that stores these parameters
inside a JSON file following a protocol. We have defined our own protocol as for the time
being there is no standard format for saving three.js 3D scenes. If the educator re-opens the
3D editor for a particular scene, then the JSON file is loaded and the three.js scene is
recreated exactly like it was saved the last time it was edited. We decided to use the JSON
format instead of the Unity3D YAML scene format because it is more compatible with web
technologies such as three.js. Only when the game is compiled, the JSON scene is converted
into a Unity3D YAML scene.

In a recent version of the plugin, game analytics are embodied in a tab next to 3D editor as
shown in Figure 2.4b. The analytics contain information regarding the entities such as the
game, the scenes, and the assets. The parameters for each entity regard the frequency of
use, the duration of use, game score statistics etc. that are described in great detail in
Sections 4,5 and 6.

Page 19

D4.2 - Final

Figure 2.4b: Analytics are displayed in a tab next to scene 3D editor.

2.1.5 3D Asset Manager

The educator can upload a new 3D asset using the “Add new Asset” button, which is only
available for senior educators, and is accessible from the Scenes Manager or the 3D editor
screens. The 3D Asset Manager screen is shown in Figure 2.5. Each 3D Asset has various
fields such as files for 3D representation (obj, mtl, jpg texture) and various fields for its
parameters (e.g. power consumption mean and variance). The category of the asset affects
the kind of fields of the asset. Further information about the categories of the assets will be
described in Section 3 for the certain use case.

Analytically, the steps to create a new 3D asset are a) select the category of the asset based
on the type of the current game project, b) write the title and an optional description, c)
upload the 3D representation files that include an mtl (material) file, an obj (mesh) file, and
a jpg texture file, and d) set the asset fields based on its category. The 3D model is rendered
in a panel and the user can save a snapshot of the 3D model to be used as an icon during the

Page 20

D4.2 - Final

3D Editor.

A 3D asset can be edited, when clicking on the ‘Edit’ button from the 3D Editor (Scene
Editor) screen. All information of a 3D asset can edited except from its category.

Figure 2.5. The 3D Asset Manager for the energy “Consumer” asset of the “Energy” Game
Type.

2.2 Wordpress Back-end

This section is addressed to administrators of WordPress sites, and describes how to
augment the capabilities of the virtual labs authoring tool for supporting more game types,
scene types, or asset types. It is assumed that basic knowledge of WordPress’ back-end is
already available. When entering the back-end, our plugin causes three items to appear in
the left-hand navigation bar as shown in Figure 2.6, namely “Game Projects”, “Scenes” &
“Assets 3D”. These items include all the functionalities that are related to the plugin and
they will be described analytically in the following lines.

Page 21

D4.2 - Final

Figure 2.6. Back-end navigation bar with the 3 new items, namely Game Projects, Scenes,
and Assets3D.

2.2.1 Game Projects

The “Game Projects” item refers to the Game Projects entity of Unity, and it has 4 sub-items
as shown in Figure 2.7, namely “All Game Projects”, “Add New”, “Game Categories”, and
“GameTypes”. The administrator can view and edit all Game Projects of all authors
presented in a list. Via the “All Game Projects” screen, the educator can select the Game
Project he wishes to edit, delete, or view. A bulk edit feature allows educators to change
certain fields for a group of Game Projects. “Add New” creates a new Game project.

Figure 2.7. “All Game Projects” screen at back-end.

“Game Categories” can be used for the categorization of games into customly defined

Page 22

D4.2 - Final

categories for searching purposes only. It is the standard taxonomy entity for all post types
of Wordpress.

“Game Types” is our defined taxonomy which is used for the functional categorization of
Game Projects into different types of Game Projects. The terms for this taxonomy are our
own terms “Energy” or “Chemistry”, as shown in Figure 2.8. Each term has its own
metadata fields. Each term has namely the 16 fields for the Project Settings files (Figure 2.9).

Figure 2.8: Game Types allows the Virtual Labs authoring tool to create various types of
Games.

Analytically, in Figure 2.8, on the left side, a tab allows to create new “Game Type” terms
(“Add New Game Type”) by filling in the Game Type name (e.g. “Agriculture”), its slug (an
abbreviation of the type name), a brief description about the new type of game (e.g.
“Games about agricultural challenges”), and pressing the “Add New Game Type” button.

By clicking on the GameType term, e.g. “Energy”, Figure 2.9 appears that enlists the 16
metadata fields for this term. These metadata fields contain the 16 texts that correspond to
Unity Project Settings files in ProjectSettings folder. These text fields work as patterns and
they are copied to every “Energy” game that it is generated. They can be edited by clicking
the Edit button. Concisely, the 16 Project Settings are the following:

Audio Manager (refer to AudioManager.asset unity files), Cluster Input Manager
(ClusterInputManager.asset), Dynamics Manager (DynamicsManager.asset), Editor Build
Settings (EditorBuildSettings.asset), Editor Settings (EditorSettings.asset), Graphics Settings
(GraphicsSettings.asset), Input Manager (InputManager.asset), Nav Mesh Areas
(NavMeshAreas.asset), Network Manager (NetworkManager.asset), Physics2D Settings
(Physics2DSettings.asset), Project Settings (ProjectSettings.asset), Project Version
(ProjectVersion.asset), Quality Settings (QualitySettings.asset), Tag Manager
(TagManager.asset), Time Manager (TimeManager.asset), Unity Connect Settings
(UnityConnectSettings.asset).

Particularly, the EditorBuildSettings, that contains the scenes to be compiled, is the only

Page 23

D4.2 - Final

field edited automatically in order to include any new scenes created by the educator.

Figure 2.9: “Energy” Game Type Screen with default Project Settings

Page 24

D4.2 - Final

2.2.2 Scenes

Scenes refer to any scene generated for any game. The “All Scenes” button leads to the list
of scenes as the example shown in Figure 2.10. Each row in the list corresponds to a Scene.
A row consists of the following columns, a) Title (the title of the Scene), b) Scene Game (the
game that this Scene belongs to), c) Scene Type (the functional category of the Scene), and
d) Date of last change. The administrators can select the Scene or Scenes they wish to edit,
delete, or view. Multiple Scenes can be selected for deletion and for editing.

Figure 2.10: Editing Scenes from the back-end.

Every time a new Game Project is created, the following scenes are automatically generated.

Main Menu – A 2D Scene that navigates the learner through his experience.

Credits – A 2D Scene that provides information about the organization that developed the
game and should be acknowledged.

First Scene – An initial 3D Scene of the Game which can be edited by the educator as the
first scene of the whole game.

The following scenes are created automatically during the compiling process:

Page 25

D4.2 - Final

Scene selector: A 2D scene that allows the learner to select an educational scene
among several scenes.

Help: A 2D scene that provides instructions to the learner.

Login: A 2D scene that provides input fields to allow the learner to login.

Settings: a 2D scene that provides the operating system game settings (screen
resolution, graphics quality).

Their parameters can be found inside the interface of the Main menu.

In the left sidebar, the “Scene Games” subitem contains all the “Game Projects” as
categories for the Scenes. Each Scene can belong only to one “Game Project”. There is no
need for modifying this taxonomy as it is automatically created when creating a game.

In the left sidebar, “Scene Types” is our custom taxonomy that refers to the types of the of
scenes. The terms for this taxonomy are namely “Main Menu Default Template”, “Credits
Default template”, and “Educational Scene default template”. Each term has several
meta-datafields that correspond to YAML code patterns to be used for generating the game
project.

Figure 2.11: Scene Types is the functional categorization of Scenes.

2.2.3 Assets 3D

By pressing the “All Assets 3D” button, the list of all Assets of all games is shown as the
example presented in Figure 2.12. The educator can select the Asset or Assets he wishes to
edit, delete, or view. Various search and filtering options allow educators to find the Assets
that they want to edit or delete. The list consists of four columns, namely the title of the

Page 26

D4.2 - Final

Asset, the Game Project that it belongs to, and the data of the last change.

Figure 2.12: List of All Assets in all games.

The column “Asset Type” is a taxonomy whose terms are shown in Figure 2.13. It is a
taxonomy that allows the categorization of Assets into categories of certain behavior, e.g.
for the “Energy” lab we have “Consumers” or “Producers” to indicate that the asset is
consuming or producing energy. An asset can belong only to one “Asset Type”. The
taxonomy terms (e.g. “Consumer”) have metadata fields that are filled with YAML code that
it is used as a pattern for the Assets that belong to this Asset Type when compiling the
game.

Page 27

D4.2 - Final

 Figure 2.13. Asset Types terms for the “Energy” Game Types.

A new “Asset Type” term can be created from “Add new Asset Type” from Asset Types as in
Figure 2.13 by providing the following fields:

Name – The actual name of the term.

Slug – Is the name abbreviation (lowercase, letters, numbers, hyphens, no spaces).

Description – A description of the term to allow educators to understand what this asset
type term is about.

When clicking on type term, e.g. “Terrain”, the metadata fields for this term appear where
the YAML pattern can be edited as in Figure 2.14. The editing of the YAML patterns requires
full knowledge of Unity3D and the functionality of the template.

Page 28

D4.2 - Final

Figure 2.14: “Terrain” term metadata field is the place where YAML patterns can be
inserted.

Page 29

D4.2 - Final

2.3 Assembling and compiling

In order to compile a game, it should first be transformed from our WordPress format into
Unity3D project format, namely to make the necessary files that are connected with each
other in a meaningful Unity format.

A Unity3D game project consists of 2 folders namely ProjectSettings Folder and Assets
Folder. ProjectSettings Folder contains 16 YAML (yet another markup language) files that
store project settings. Their extension is .asset. These 16 YAML files are saved in WordPress
as taxonomy term metadata of the custom post type “Game Project”.

When the user presses the “Compile” button, as the example shown in Figure 2.16, a
dialogue pops up asking the educator to provide the output format, where Web is the
default one. Upon pressing proceed, all the information in Wordpress is assembled to a
Unity3D project, and then a compile command is executed by the Unity3D engine. There are
several steps for assembling and compiling the project that are explained below.

Figure 2.16: Compile button and following interface.

Guidelines for assembling and compiling a game project

1. The following folders (cases sensitive) are generated in “Uploads” with the name of the
Game Project plus Unity string, e.g.

a. “Uploads/myGameProjectUnity”
b. “Uploads/myGameProjectUnity/ProjectSettings”
c. “Uploads/myGameProjectUnity/Assets”
d. “Uploads/myGameProjectUnity/Assets/Editor”
e. “Uploads/myGameProjectUnity/Assets/scenes”
f. “Uploads/myGameProjectUnity/Assets/models”
g. “Uploads/myGameProjectUnity/Assets/StandardAssets”
h. “Uploads/myGameProjectUnity/builds”

Page 30

D4.2 - Final

2. Uploads/myGameProjectUnity/ProjectSettings: The 16 taxonomy terms meta-data of
the WordPress taxonomy GameType where “myGame” belongs to are saved as files in
the “ProjectSettings”. Changes happen to the following text metadata before saving into
a file.

EditorBuildSettings.asset: EditorBuildSettings.asset contains which scenes will be
compiled in the build of the game for Windows, Linux or Mac outputs, e.g.

%YAML 1.1
%TAG !u! tag:unity3d.com,2011:
--- !u!1045 &1
EditorBuildSettings:
 m_ObjectHideFlags: 0
 serializedVersion: 2
 m_Scenes:
 - enabled: 1
 path: Assets/scenes/MainMenu.unity
 - enabled: 1

path: Assets/scenes/Help.unity
 - enabled: 1

path: Assets/scenes/Login.unity
 - enabled: 1

path: Assets/scenes/Options.unity
 - enabled: 1

path: Assets/scenes/SceneSelector.unity
 - enabled: 1

path: Assets/scenes/___[EducationalScene_1]___.unity
 - enabled: 1

path: Assets/scenes/___[EducationalScene_2]___.unity
...
 - enabled: 1

path: Assets/scenes/RewardScene.unity

as parameters are the names ___[EducationalScene_1]___ and
___[EducationalScene_2]___ and any similar that are replaced with the real names
of the Educational Scenes.

Also the TagManager.asset, the file that contains the available tags for the objects that
identify their functionality id , in the game should be 2

%YAML 1.1
%TAG !u! tag:unity3d.com,2011:
--- !u!78 &1
TagManager:
 serializedVersion: 2
 tags:
 - consumer
 - producer
 - terrain

2 Where custom tags consumer, producer, and terrain are used in the WindEnergyGame

Page 31

D4.2 - Final

 layers:
 - Default
 - TransparentFX
 - Ignore Raycast
 -
 - Water
 - UI
 - (26 lines)
 m_SortingLayers:
 - name: Default
 uniqueID: 0
 locked: 0

3. Uploads/myGameProjectUnity/Assets/Editor: Here a script in C#, named as

“WebGLBuilder.cs” is used to import objects into the Unity3D project such as make
materials, meta files, and add scenes into the procedure for compiling to WebGL. 3

WebGLBuilder.cs

using UnityEditor;
class WebGLBuilder {

static void build() {

 AssetDatabase.ImportAsset("Assets/models/building1/building1.obj",
 ImportAssetOptions.Default);

 AssetDatabase.ImportAsset("Assets/models/building1/building2.obj",
 ImportAssetOptions.Default);

string[] scenes = {"Assets/scenes/S_MainMenu.unity",
"Assets/scenes/S_Login.unity",
"Assets/scenes/S_Help.unity",
"Assets/scenes/S_1.unity",
….
"Assets/scenes/S_Reward.unity",
"Assets/scenes/S_Credits.unity",
"Assets/scenes/S_Settings.unity",
"Assets/scenes/S_SceneSelector.unity"};

string pathToDeploy = "build";
BuildPipeline.BuildPlayer(scenes, pathToDeploy, BuildTarget.WebGL, BuildOptions.None);
}

}

4. Uploads/myGameProjectUnity/Assets/models: Here all the Assets3D of WordPress that

3 If a meta object already exists it will not overwrite a previous one.

Page 32

D4.2 - Final

should be copied. For each Asset3D, there are several files depending on the category of
the Asset3D. These files are explained in Appendix I.

5. Uploads/myGameProjectUnity/Assets/scenes: Here all the .unity files of each scene

that should be created and filled with content. Such as:
i. MainMenu.unity:

ii. Login.unity:
iii. Options.unity:
iv. Help.unity:
v. SceneSelector.unity:

vi. Credits.unity
vii. s1.unity

viii. s2.unity
ix. …
x. Reward.unity

The file .unity.meta is automatically created during the compile process and there is
no need to generate this file with another mechanism. The .unity files contain
thousands of generated coded lines and it is out of the scope to described them
here. A description was provided in deliverable D4.1.

6. Uploads/myGameProjectUnity/Assets/StandardAssets: This folder is a prefixed folder

with fonts, analytics scripts, game scripts, materials and textures, that are the same
across all games of the certain Game Type, e.g. WindEnergy_Auxiliary_Assets. In
WordPress, this folder is already stored in

wordpressunity3deditor/StandardAssets/Energy

and it should be copied as it is.

7. Uploads/myGameProjectUnity/builds: This folder contains the compiled game.

8. Compiling: The game project is compiled for WebGL format from command line. This is
allowed through the following commands which depend on the operating system that runs
on the server. This could be can be either Windows or Linux (Ubuntu).

In Windows server to WebGL html: The following command exploits WebGLBuilder.cs that
was explained in step 3 of the assemblier. All the following content should be placed in a
.bat file.

set mypath=%cd%

@echo %mypath%

"C:\Program Files\Unity\Editor\Unity.exe" -quit -batchmode -logFile

stdout.txt -projectPath %mypath% -executeMethod WebGLBuilder.build

In Linux server to WebGL html: The following command exploits WebGLBuilder.cs that was

Page 33

D4.2 - Final

explained in step 3 of the assemblier. All the following content should be placed in a .sh file.

#/bin/bash

projectPath=`pwd`

xvfb-run --auto-servernum --server-args='-screen 0 1024x768x24:32'

/opt/Unity/Editor/Unity -batchmode -nographics -logfile stdout.log

-force-opengl -quit -projectPath ${projectPath} -executeMethod

WebGLBuilder.build

output: The output is generated in \builds folder as an index.html and a resource folder.

stdout.txt: contains the log file of the compiling.

Information for compiling to desktop version (Windows, Mac or Linux) can be found in
Appendix II.

The monitoring of compiling consists of periodical checks of stdout.txt log file and of
monitoring the process in the server’s RAM. The latter is achieved with the following
commands.

For Windows server -The following php command generates a report in CSV format for
which Unity processes are running in the server.

$processUnityCSV = exec('TASKLIST /FI "imagename eq Unity.exe" /v /fo

CSV');

For Linux server: The same is achieved in Linux with the following command:

 $processUnityCSV = exec('pgrep Unity');

Page 34

D4.2 - Final

3. Alignments with the use cases

In this section, we discuss the output of the Virtual Labs authoring tool, i.e. the generated
game, with respect to each use case. In order for the authoring tool to generate games of a
certain type, a template game should be optimized and split into parts that server as YAML
patterns for Game Types, Scene Types, and Asset Types. Since the Wind Energy lab was the
only available game template during the writing of this deliverable we focus only on the
respective use. The Chemistry lab template will be discussed in the following deliverable.

3.1 How a generated game looks like

The games contain by default certain 2D scenes, which allow the basic functionalities of
games with GUI elements. These 2D scenes are outlined in the following:

Main Menu - It is the central point of the game where the learner can select what to do next
as shown in Figure 3.1. The title, e.g. “Renewable Energy VR Lab” and the image below the
title are editable from the virtual labs authoring tool. All the other GUI elements are fixed.
An option is provided to hide Login, Settings and Help if the educator does not wish to have
these buttons available.

Figure 3.1: Main menu scene

Login - Button loads a Scene where the input fields for the learner name, the surname, and
the school can be found. An example is shown in Figure 3.2. The information is encrypted
before transmission into a unique identifier that can not be inversed, i.e. there it is not
possible to extract a learner’s name from its encrypted identifier. This scene is not editable
from the authoring tool.

Page 35

D4.2 - Final

Figure 3.2: Login scene

Settings - Button loads a scene that provides controls for changing screen size and details
level as shown in Figure 3.3. This screen is useful in low-end devices that should have a low
resolution and details level in order for the game to be played smoothly. This scene is not
editable from the authoring tool.

Figure 3.3: Settings scene.

Credits - Button loads a scene where the authors of the game are acknowledged. An
example is shown in Figure 3.4. The editable elements by the authoring tool are the image
and the description of the authors.

Page 36

D4.2 - Final

Figure 3.4: Credits scene

Help - Button loads a scene where the learning material is provided in the form of an image
and a text as shown in Figure 3.5. Both image and text are editable from the authoring tool.

Figure 3.5: Help scene provides the learning material and instructions for the generated
games.

Play - Button loads a scene named as “Scene Selector” that allows the user to select an
Educational Scene to play among several choices. An example is shown in Figure 3.6. This
scene is automatically generated from the authoring tool based on how many Educational
Scenes are available. The title, description, and image of the scene are those fed as input
during the creation of each scene. The title “Select a Scene” is editable. Next, the
Educational Scenes are described.

Page 37

D4.2 - Final

Figure 3.6: Scene Selector scene allows to select a “level”.

Educational Scenes - These are the energy production-consumption simulation scenes that
contain the main interaction for achieving the learning objective. An example is shown in
Figure 3.7. Here the energy consumers are the buildings which are colored as red indicating
that they are underpowered. Above each building, a billboard shows the mean and the
variance of the consumption of each building. The circles in the terrain indicate candidate
positions for inserting a wind turbine. On hovering above each cycle, information of the
candidate turbine is shown. On clicking a cycle, a turbine is built over it. Depending on the
size of the turbine rotor the nearby candidate positions are destroyed automatically in a
range of 1.5 times of the rotor size. When hovering on each turbine a billboard over the
turbine shows the characteristics of the turbine as well as the current output for the current
wind speed. On bottom-left, the current state of the game is shown. This state consists of
the following metrics: the total energy produced so far, the money earned, the required
power, the generated power, and the wind (current, mean, variance). The simulation lasts 6
minutes in real time that corresponds to 24 hours. A turbine can be damaged after some
time, and the learner can click on it to repair it with some cost. The editable simulation
parameters by the virtual labs authoring tool will be described in Section 3.2. The
interactions allowed by the learner will be described in Section 3.3. Upon finishing the
simulation the Reward scene is shown which is described next.

Page 38

D4.2 - Final

Figure 3.7: The simulation of energy production-consumption constitute the educational
scenes.

Reward Scene - As shown in Figure 3.8, contains the final score and an overall evaluation for
the simulation session. The learner can see his or her score as the money earned, the energy
produced and the balance of among overpower, correct power, and under-power time.

Figure 3.8: The reward scene displays the score of the learner.

Page 39

D4.2 - Final

3.2 What the educator can do with the Virtual labs authoring tool using the
“Energy” lab template

The “Energy” template can be used to generate an arbitrary number of games, with an
arbitrary number of Educational Scenes, and with an arbitrary number of game objects per
Educational Scene. In the following lines, we will describe which parameters the educator
can change by using the vlabs authoring tool. Briefly, the vlabs authoring tool copes with the
following requirements.

● Allow the learner to select an Educational Scene to play among several Educational
Scenes. Each scene has its own pros and cons that should be explained to learner.

● The energy consumption per scene should be modifiable.
● The wind speed per scene should be modifiable.
● Wind energy turbines should have the following modifiable parameters

○ Power Generation
○ Size
○ Cost to buy

The educator can do the following actions in the first prototype of the vlabs authoring tool

[Action A] Create multiple Educational Scenes: Each of these scenes is a certain area where
the wind energy generators can be placed. This action is feasible by pressing the button
“ADD NEW SCENE” as in Figure 3.9.

Figure 3.9: Making a new Educational Scene for “testmygame” game project.

In each scene, several game objects can be inserted by the educator. Otherwise, the area is
totally empty.

[Action B] Insert a Terrain: A Terrain is a ground where turbines can be placed. This action

Page 40

D4.2 - Final

is feasible by drag-n-drop an Asset3D to the scene. Figure 3.10 shows a scene with a terrain.
Only one Terrain can be placed in a scene.

Figure 3.10: Inserting a terrain with drag-n-drop from right toolbar.

The Terrain has the following fields that should be defined by the educator by pressing the
“Edit” or “Create new Asset”. The interface for creating a Terrain as shown in Figures 3.11a
and 3.11b. First, in Figure 3.11a, the user should select the category of the Asset3D which in
our case is Terrain. Then automatically several fields popup that are shown in Figure 3.11b.

Figure 3.11a: Web page for creating a new Asset3D.

Page 41

D4.2 - Final

Figure 3.11b: Specific fields for the category “Terrain”.

The terrain has the following parameters that can be modified from the educator.

- Wind Speed
- Mean : value in m/sec
- Variance : value in (m/sec)2

- Range : Min - Max values in m/sec

 Construction Penalties:

- Access cost penalty: value in $ (limits 0 to 5, default 0)
- Archaeological site proximity penalty: value in $ (limits 0 to 5, default 0)
- Natural reserve proximity penalty: value in $ (limits 0 to 5, default 0)
- Distance from High Voltage lines penalty: value in $ (limits 0 to 5, default 0)

[Action C] Insert a Decorator: A Decorator is a game object that can improve the
immersiveness such as “Archaeological site”, “Power lines”, “Trees”, etc.. Their category,
which should be selected when creating a new asset, is named as “Decorator”. Decorators
can be dragged-n-dropped an arbitrary number of times in the scene as shown in Figure 3.12
for a tree. They do not have any fields.

Page 42

D4.2 - Final

Figure 3.12: Example for inserting a tree, which is a decorator type of Assets3D.

[Action D] Insert a Consumer: A Consumer is a game object that consumes energy (e.g. a
building). Several Consumers (block-of-flats, single houses, factories) will be available for
drag-n-drop in the scene for multiple times. The total energy consumption is the sum of the
consumption of all Consumers. A Consumer turns red if underpowered, blue if
overpowered, and normal color if correctly powered. A screenshot is shown in Figure 3.13.

Figure 3.13: Inserting a building that consumes energy.

Consumers have several fields that define their power consumption such as:

- Energy Consumption:
- Paid money per kWh: 3 values in $ for overpower, for correct power, and for

Page 43

D4.2 - Final

underpower
- Overpower: Min: -5, Max: 5, Default: 0.5
- Correct power: Min: -5, Max: 5, Default: 1
- Under power: Min: -5, Max: 5, Default: 0

- Range: A 2D vector: Min: 0 MW, Max: 2 MW, Defaults: [0 MW , 2MW]
- Mean : Min 0 MW, Max: 2 MW, Default 0.1 MW

- Variance : Min 0.001 MW2 , Max : 1 MW^2 , Default: 0.15 MW^2

[Action E] Insert a Producer: A Producer is a game object that generates energy (e.g. a Wind
Turbine or a Solar Panel). Producers can be dragged-n-dropped several times in the game by
the educator. When the game starts they do not appear but a marker is shown on the
ground to indicate to the learner that in this place where a Producer can be built (Candidate
position). A screenshot of the producers in the vlabs authoring tool is shown in Figure 3.14.

Figure 3.14: Screenshot for inserting producers in the vlabs authoring tool.

Each Producer has several fields such as

● Energy class - It is energy production curve with respect to the wind that it is written
as pairs of values e.g. (0,0),(1,0)(2,0)(3,0)(4,0.5)(5,1) … (25,6)(26,6)(27,6) where the
first value in the pair denotes the air speed in m/sec and the second value denotes
the power production in MW. These can be changed with the sliders shown in Figure
3.16.

● Size - The size of the turbine is fixed in meters (min : 3 m, max: 250m). Default 90m.
● Cost to buy - in $, Min $1, Max $10, Default $3.
● Damage coefficient probability - 0.001 to 0.02 which is the probability for the turbine

to be damaged per second. Default 0.005.

Page 44

D4.2 - Final

● Damage repair cost - in $, Min $0.5, Max 5.

Figure 3.16: Power efficiency curve of the wind turbine. X axis is the Wind Speed, whereas y
axis is the power production.

What the educator can not do in the first prototype of the vlabs authoring tool with respect
to the requirements is

a) Define sub-areas inside the areas
b) Buy area extension
c) Reduce the efficiency of the Wind turbine (proximity to other turbines, parallel

distribution)

These requirements will be investigated in the second phase prototype.

3.3 Learner actions allowed in the produced games

Here we provide a summary of the actions that learner can perform with respect to the
learning objective.

[Action A] Select an area: to place the turbine among several choices where the pros and
the cons are stated. An example is displayed in Figure 3.17.

Page 45

D4.2 - Final

Figure 3.17: The learner can select an educational scene among several choices.

[Action B] Place turbines in candidate positions: A candidate position is shown with a
marker as shown in Figure 3.18.

Figure 3.18: The marker denotes a candidate position for a turbine.

[Action C] Turn off a turbine - The learner can turn-off a turbine by clicking on it when the
power generation greater than the consumption.

[Action D] Repair a turbine - The learner can repair a turbine if the turbine outputs smoke
by clicking on it.

[Action E] Change simulation speed - The learner can change the simulation speed using the
top-middle dropdown button.

Other navigation and visualization features are :

● The learner can orbit-zoom-pan around the scene to see the turbines from all sides.
● The learner can view money earned, current energy production-consumption, and

current wind speed in the lower-left panel.

Game rules and rewarding
If the energy need and production are in equilibrium the learner earns some virtual coins. If
the learner repairs a turbine, then he or she loses some virtual coins. The values are defined
by the educator in the game generation process. Every 15 seconds, the status of the game is
reported to the analytics server which are game state events consisting of

1) wind speed
2) energy production
3) energy consumption
4) turbines places
5) turbines set off
6) money owned

Section 4.1 explains the game state concept.

Page 46

D4.2 - Final

3.4 Hardware specifications

The generated games are web games which can be played through “Chrome”, “Firefox” and
other web browsers. The hardware recommendations should be for middle-end devices.
However, the games provide the option to deteriorate the detail level (from settings scene)
in order for the game to run smoothly on low-end personal computers. In detail the
software-hardware minimum recommendations are:

a) PC Operation System: Windows 7, Linux, or Mac
b) CPU: i5 processor of first generation or any equivalent
c) RAM: 1.5 GB free
d) Web browser: 64bit Chrome, Firefox, or Edge

Optimum specifications are:

e) CPU: i5 processor of 3rd generation or better
f) RAM: 2 GB free

Page 47

D4.2 - Final

4. Gathering data for shallow analytics

To track data for shallow analytics, GIO developed an SDK for Unity from scratch. To initialize
the SDK and distinguish different labs, GIO provides privately an app key.

Figure 4.1 - Interface to initialize the Unity SDK

The SDK can be used with Unity for Windows, OSX, and for WebGL. Aside from the official
Asset Store, the SDK is integrated as a plugin with an interface for tracking. In the GitHub
repository of the ENVISAGE project, one can find the source code and a step by step manual 4

for integrating the SDK. The SDK provides, a method to track user actions and an additional
method for tracking specific user traits. The tracking specification in deliverable D2.1,
Section 4.1, was followed. For now, meta data transmitted with every launch of an Unity app
are

● app version - current version of the virtual lab
● build number - current version of the GIO Unity SDK
● timezone - timezone offset of the user in milliseconds, e.g., 3600000 for UTC+1

Once a tracking point is defined, the tracking can be called with additional parameters. GIO
created a new ‘identify’-method which can be called with specific traits. As an example, the
SDK can now collect a first name or a last name. For a grouping of learners into classes, GIO
introduced an abstract group event. This event gets a special treatment in the GIO backend
and adds a group id to the tracking. The following example shows how data is collected.

4 https://github.com/Envisage-H2020/sdk_unity

Page 48

https://github.com/Envisage-H2020/sdk_unity

D4.2 - Final

● event tracking
track(state_update, 'wind_speed', 'warp');

● group call
track('group', 'GGS Turing');

● identify
identify('firstname', 'Kurt');
identify('lastname', 'Goedle');

4.1 Updated Tracking Concept

Together with other partners from the consortium, GIO created a tracking concept that
respects pedagogical aspects, as well as ideas for special machine learning purposes. From
this discussion, the notion of a game state was introduced. Here, state information is polled
in an interval of 15 seconds and the data is then directly sent to the GIO backend. The game
state contains current information about a learner which represents the progress over time.
In the Wind Energy Lab for example, information about the power output or the wind speed
value is included too. In the tracking method it is defined as 'state_update'. Table 4.1
shows an extract of tracking points in the Wind Energy Lab. A full list is available online . 5

event event_id event_value description

launch
Event when a learner starts the
application

start.simulation
Event when a learner starts the
simulation

resume.simulation

Event when a learner resumes
the simulation after he paused
the simulation via the play
button

configure.simulation_
speed warp | fast | slow

Event when a learner adjusts
the simulation speed (this is the
duration of the simulation)

add.turbineDetailed turbine_id <turbine power>
Event when a learner inserts a
turbine with id “turbine_id”

select.educationalSce
ne scene_name <scene_title>

Event when a learner selects a
certain educational scene
among several, e.g. "Athens",
"Koln", etc

select.scene scene_name

Event when a learner selects a
menu scene (Credits, Help,
Settings, Login, Play)

press.uiButton button_name Event when a learner presses

5
https://docs.google.com/spreadsheets/d/1zDWrM70NKz22iAV6nbWF30l2AVsyMGh8XKzYftTdnSw/edit#gid=0

Page 49

D4.2 - Final

any UI buttons (e.g. Back, Main
Menu,)

submit.score

<time_underpo
wer>
| <time_overp
ower>
| <time_correc
tpower>
| <energy_pro
duced>
| <money_earn
ed>
| <time_played
>

<time_played_in
seconds>

Events when a simulation
finishes. The time played is
added because we want to see
if the users played until 24:00
or less.

identify
<first_name> |
<last_name> | <text_value>

Not changeable event, to
submit the first/last name

group <group_id>

Event when learners add
themselves to a group, e.g a
school class

Table 4.1 - Extract of tracking points in the 3d Wind Energy Lab

The development of the SDK and the definition of the tracking points is a continuous and
ongoing process. The current status allows the project to have the same data tracking
abilities within Unity as for the Google Tag Manager integration described in deliverable
D2.1, Section 4.3.1.

4.2 Identifying Learners recurrently

One challenge during the development was the handling of user ids in order to track
learners over more than one session. Once a learner starts the wind energy lab, the tracking
begins but the learners are only recurrently identifiable if they enter any login information.
Therefore, GIO implemented a new matching attribute. This helps to match tracking points
which have happened before the login and after the login. For now, GIO only collects this
matching information. The logic to merge these two tracking stages of learners is not yet
implemented in the backend but will follow in the near future.

The process of identifying a learner recurrently has three steps

1. Creating a temporary id which only remains the same for one session
2. Creating a user id from the login information (based on first name, last name, school)
3. Sending a matching event (identify) to the backend with the temporary id, which we

call anonymous id, and the user id

To create a temporary id for the matching which is unique for everyone, GIO makes use of

Page 50

D4.2 - Final

the GUID creation function in C#. To identify a user recurrently, a user id is created based 6

on the login information. Therefore, the first name, the last name and the school name is
concatenated and hashed with MD5 and then transformed to GUID format. This enables 7 8

the identification of a learner independent of the session while respecting the privacy. The
matching attribute and the user id based on login information are transmitted within the
same tracking call with the identify method.

4.3 Non profit distribution of the SDK

Currently, there is no third party SDK in the Unity Asset Store that is able to make raw data
accessible in a way we need it. Still, there is an Analytics category in the Unity Asset Store 9

where we planned to publish the ENVISAGE analytics SDK for more traction. However, one
has to connect with Unity for the upload. GIO reached out to Unity but after a couple of
mails back and forth with Unity, the official response was that they do not allow
data/analytics SDKs in the Asset Store. Nevertheless, GIO is going to keep this possibilities in
mind and might try to officially publish the SDK again in the future.

6 https://msdn.microsoft.com/en-us/library/system.guid(v=vs.110).aspx
7 https://msdn.microsoft.com/en-us/library/system.security.cryptography.md5(v=vs.110).aspx
8 This is done to have unified format of user ids.
9 https://www.assetstore.unity3d.com/en/#!/search/page=1/sortby=popularity/query=category:132

Page 51

D4.2 - Final

5. Injecting analytics and its data into the authoring tool

There are different approaches that can be used to integrate the analytics component into
the authoring tool. The most straightforward approach is that the authoring tool queries the
GIO-servers for the data that is needed for a specific visualization. The response should be a
JSON-object that contains all necessary information to draw the corresponding diagrams
and charts.

Figure 5.1: Each bar shows the absolute frequency of a particular event in a virtual lab. For
example, the launch of a lab. To visualize this information, the frontend component requires
at least the names of the different events and their occurrences.

This data can either be calculated directly on the GIO-servers as needed (see Section 5.1) or
the GIO-servers return pre-calculated data that has been created previously in a batch
fashion — potentially even created on other servers (see Section 5.2). And lastly, there is
also the option that the authoring tool queries a different third-party service that returns
the required data (see Section 5.3). In this case, the third-party will first query the GIO-API
for the raw data, then do the calculations and return the data for the visualization to the
authoring tool. We will also use the latter option to make the development of different
analytics more flexible and less demanding on the deployment of the live infrastructure. For
more details, please see Figure 4.3.

Page 52

D4.2 - Final

Figure 4.3: As described above, the data can be raw and analytics data can be accessed in
different ways. For all three approaches, the next sections will give more details.

5.1 Direct Online Data Access

Let us assume that we want to show a bar chart in the authoring tool as shown in the figure
above and suggested in deliverable D2.3, Section 5.1. The endpoint will be:

curl

-H 'content-type: application/json'

-H 'X-goedle-app-key: <LAB_ID>'

-H 'X-goedle-master-key: <MASTER_KEY>'

https://api.goedle.io/apps/<LAB_ID>/bar_chart/events

The response in JSON of such an endpoint is as follows:

{

'data': [

{ 'event': 'launch', 'count': 170},

…

{ 'event': 'pause.simulation', 'count': 40}

]

}

However, without additional parameters, the response will most likely be too general as it
contains data from all learners in the database across all schools and classes. Therefore, we
add query parameters such as 'last_active_gte' and 'last_active_lt'. Both
parameters allow us to reduce the number of learners to only those who have been active in
a certain period of time. In many cases, we also want to focus on learners in a specific
'country' or in a particular 'group' (e.g., a class in a school). We will add such
parameters as required so that the desired segment can be displayed. This endpoint

Page 53

D4.2 - Final

requires the authoring tool to allow the learners to pick these parameters accordingly.
Additionally, the authoring tool needs a safe mechanism of storing the API master key within
the tool which is referred to as '<MASTER_KEY>' in the example above.

After receiving a request, the learners database is queried for the learners matching the
parameters and afterwards the data necessary for the bar chart will be calculated. For
shallow analytics, the calculations will be according to deliverable D2.2 and D2.3. An
example response is the JSON response depicted above.

5.2 Cached Data Access

This setting is more challenging because it requires that the data for the bar chart to exist
already pre-calculated in the GIO database. Therefore, the parameters need to be limited in
a certain way so that a manageable amount of data can be pre-calculated every a certain
time interval, e.g., 24 hours. This is useful in different cases. In first place, some of the deep
analytics will be computationally challenging so that an online calculation is not feasible.
Pre-calculating the data ensures a smooth user experience. Additionally, the computation is
not happening on the same server that return the data for visualization as different
hardware requirements are present.

In this setting, the service calculating the data would either query the GIO-API for the raw
data as described in deliverable D2.1, Section 7.1, or use the aggregated data access (as
described in D2.1, Section 7.2). The aggregated data access looks very similar to the
curl-request above. However, it returns user level data instead of aggregated data necessary
for the bar char. For example, one could query the API for all learner that have been active
on July 21, 2017 and later but before July 28, 2017:

curl

-H 'content-type: application/json'

-H 'X-goedle-app-key: <LAB_ID>'

 -H 'X-goedle-master-key: <MASTER_KEY>'

 https://api.goedle.io/apps/<LAB_ID>/users/?\

last_active_gte=2017-07-21&

last_active_lt=2017-07-28

After the raw data or learner data has been received and the calculations for the
visualizations have been done as well, the data needs to be sent back to the GIO servers. For
this purpose, another endpoint needs to be added. It is most reasonable to add a
PUT-endpoint to the API that works the same way as the GET-endpoint above. E.g.,

curl

-X PUT -d @data.json

-H 'content-type: application/json'

-H 'X-goedle-app-key: <LAB_ID>'

-H 'X-goedle-master-key: <MASTER_KEY>'

https://api.goedle.io/apps/<LAB_ID>/chord_diagram

The call assumes that 'data.json' contains all data necessary to show the visualization in

Page 54

D4.2 - Final

JSON, i.e., it should look similar to the JSON response above. Of course, this endpoint needs
to be equipped with a functionality that handles parameters in a corresponding way to the
GET-endpoint. Depending on the possible distributions of the parameters, the data has to be
saved in the GIO database based on these parameters so that it can be retrieved
accordingly.

5.3 Data Access via Third-Party

In some cases, it is easier to return the calculated data from other third-party servers. One
particular example is the development phase where code is still being written and the
features are not production ready yet. In this setting the authoring tool queries a temporary
server that returns the information in JSON the same way as depicted above. In such a
scenario the third-party server queries the GIO-API to obtain the raw data. It then calculates
the necessary information to show in the visualization.

Page 55

D4.2 - Final

6. Visualization of Deep and Shallow Analytics

In order to analyze, model, and eventually visualize, learner behavior through shallow and
deep analytics, we are implementing three separate technical solutions. The three solutions
are interdependent and form a logical and operational stack, that can be deployed as one,
and hence all three of them are described in this section. These relations are outlined in
Figure 6.1.

The user-facing layer of the stack is the visualization service. This service displays observed
and inferred information about the learners of a given virtual lab and informs the author of
behaviors in the currently implemented version of the virtual lab as well as potential
outcomes of changes to the virtual labs. The visualization service in turn receives its
information from the shallow analytics service.

The shallow analytics service performs data aggregation, abstraction, and storage tasks,
taking raw measurements gathered from the virtual labs and turning these into metrics that
can be analyzed by the user. The shallow analytics service communicates with the deep
analytics service that receives data, models the data, and transmits this back to the shallow
analytics service which in turn stores the results and provides these to consumers i.e. the
visualization service. Further information for each 3rd party library will be provided in
Section 6.2.

Figure 6.1: Overview of the visualization, shallow analytics, and deep analytics stack. Blue:
services and their core functions; Yellow: necessary platforms; and Orange: used libraries
and custom code.

Page 56

D4.2 - Final

6.1 Measured Data

The raw data points as they were described in Section 4, Table 4.1, are converted into a
number of metrics by the shallow analytics service. Depending on the use case these may be
converted on-line in the user’s browser or off-line and stored with the data set. All events
are grouped by user and session and turned into list data structures with one list per user
per session. Individual sessions are demarcated using the “launch” event described in Table
4.1. If no further events are received from the same user for an extensive amount of time,
the session is considered concluded.

With each list representing a series of events for each session for each learner, it now
becomes possible to leverage the other event types to evaluate the learner’s travel path
through the application, as well as calculating the five key metrics of interest, defined in
previous deliverables. Further, combinations of these features constructed from expert
knowledge, as well as the raw event data, may be transferred to the deep analytics service
for treatment.

6.2 Software libraries used

In Table 6.1, the software libraries used in the implementation and some installation
instructions for assisting integration procedure are provided.

Software Use Instructions

Ubuntu
Linux 16.04
LTS

Any operating system capable of providing
internet access and executing Python code
may in principle be used to host the
visualization, shallow, and deep analytics
services. For ENVISAGE, we are currently
using Ubuntu 16.04 LTS.

Free to download from:
https://www.ubuntu.com/downl
oad

Anaconda
4.4.0

A wrap of Python and supporting libraries.
Anaconda is an open source data science
platform that includes the most common
data science and machine learning
frameworks.

Free to download from:
https://www.continuum.io/down
loads

Flask/bottle Flask/bottle are lightweight micro
frameworks for generating and serving
web pages using Python. Either may be
more appropriate depending on the
particular needs of an installation. For
ENVISAGE we use Flask for development
and bottle for production

Both Flask and bottle may be
installed using the Python package
manager pip, using either of the
following commands:
pip install Flask

or
pip install bottle

D3 Data-Driven-Documents (D3.js) is a
JavaScript library for manipulating data
and generating visualizations. D3 is

D3 is included with the content
served by either the Flask or the
bottle microframeworks to the

Page 57

https://www.ubuntu.com/download
https://www.continuum.io/downloads
https://www.continuum.io/downloads
https://www.ubuntu.com/download

D4.2 - Final

responsible for generating the content
rendered in the user’s browser.

user’s browser. As such it is included
in the code found in the ENVISAGE
repositories and no further
installation is necessary.

Custom
JavaScript

ENVISAGE uses custom JavaScript code for
some data preparation and visualization in
shallow analytics.

May be obtained from the ENVISAGE
repositories.

Vincent Vincent is a Python to Vega translator. It
allows for generating D3 visualization
specifications using a Python codebase. As
such, it is the ‘glue’ between the backend
data treatment and the D3 visualizations.

Vincent may be installed using the
Python package manager pip, with
the following command:
pip install vincent

Vega Vega is a visualization grammar that can
be used to provide specifications for D3
visualizations. For ENVISAGE, Vega is the
protocol used to communicate between
the modeling and manipulation Python
code and the D3 visualization code. Vega
is structured in JSON, a standard format
for exchanging data via the internet.

As Vega is used as a communication
protocol between the Python code
of the project and the D3 JavaScript
visualizations, no installation is
necessary.

scikit-learn scikit-learn is a machine learning library
for Python that contains many common
algorithms, some of which are leveraged
in ENVISAGE.

scikit-learn is installed as part of
Anaconda (see above) but can be
installed on its own via pip, using the
following command:
pip install

scikit-learn[alldeps]

pandas Pandas is a scientific data manipulation
library for convenient preparation and
treatment of data.

pandas is installed as part of
Anaconda (see above) but can be
installed on its own via pip, using the
following command:
pip install pandas

Custom
Python code

ENVISAGE uses custom Python code to
take care of data exchange, manipulation,
aggregation, shaping, and presentation.

May be obtained from the ENVISAGE
repositories.

Table 6.1. Platforms, frameworks, and libraries used for visualization, shallow, and deep
analytics.

Running the visualization, shallow and deep analytics stack

For running the software stack described in this section in its current form, all the software
in Table 6.1 must be installed on the server.

Page 58

D4.2 - Final

The visualization, shallow, and deep analytics stack must be checked out from the ENVISAGE
repository.

If using Flask, the following command should be executed at the command prompt to start
the service.

./envisage_analytics.py --port [PORT] --app-key [APP-KEY] --master-key

[MASTER-KEY]

The analytics web pages may then be accessed from the server, using the port specified in
the place of [PORT], e.g. port 80, port 443 or port 5000.

Page 59

D4.2 - Final

References

D1.1, “Educational scenarios and stakeholder analysis,” Envisage project deliverable, Apr.
2017.

D1.2, “Data structure and functional requirements,” Envisage project deliverable, Feb. 2017.

D2.2, “User profiling and behavioral modeling based on shallow analytics,” Envisage project
deliverable, May 2017.

D2.3, “Visualization strategies for course progress reports”, Envisage project deliverable,
May 2017.

Prensky, Marc. "Fun, play and games: What makes games engaging." Digital game-based
learning 5 (2001): 1-05.

Page 60

D4.2 - Final

Appendix I: Assets files

Here we provide information about each asset file and how it should be imported into the
game project. Common parameters across assets are the fileFormatVersion, 1 for Mac vs 2
for Windows, guid (Global User Interface Identifier) which is a string of 32 characters that
identifies uniquely the folder asset, and timeCreated is the unix timestamp in secs from
1/1/1970 UTC.

1. obj and obj.meta
a. obj is a text file format for storing object meshes. Limitations is that the ‘o’

object tags should be replaced with ‘g’ group tags. Upper limit for the size is
256 MB as well for all files.

b. obj.meta: contains the guid for the certain obj. It should be generated from
our plugin according to the following pattern where fileFormatVersion, guid,
and timeCreated should be replaced accordingly.

fileFormatVersion: 2
guid: 64d690459f3cb8a4ca08c28f4ac524bd
timeCreated: 1499687746
licenseType: Free
ModelImporter:
 serializedVersion: 19
 fileIDToRecycleName:
 100000: building1
 100002: //RootNode
 400000: building1
 400002: //RootNode
 2300000: building1
 3300000: building1
 4300000: building1
 materials:
 importMaterials: 1
 materialName: 0
 materialSearch: 1
 animations:
 legacyGenerateAnimations: 4
 bakeSimulation: 0
 resampleCurves: 1
 optimizeGameObjects: 0
 motionNodeName:
 rigImportErrors:
 rigImportWarnings:
 animationImportErrors:
 animationImportWarnings:
 animationRetargetingWarnings:
 animationDoRetargetingWarnings: 0
 animationCompression: 1
 animationRotationError: 0.5
 animationPositionError: 0.5
 animationScaleError: 0.5
 animationWrapMode: 0
 extraExposedTransformPaths: []
 clipAnimations: []
 isReadable: 1
 meshes:
 lODScreenPercentages: []
 globalScale: 1

 meshCompression: 0
 addColliders: 0
 importBlendShapes: 1
 swapUVChannels: 0
 generateSecondaryUV: 0
 useFileUnits: 1
 optimizeMeshForGPU: 1
 keepQuads: 0
 weldVertices: 1
 secondaryUVAngleDistortion: 8
 secondaryUVAreaDistortion: 15.000001
 secondaryUVHardAngle: 88
 secondaryUVPackMargin: 4
 useFileScale: 1
 tangentSpace:
 normalSmoothAngle: 60
 normalImportMode: 0
 tangentImportMode: 3
 importAnimation: 1
 copyAvatar: 0
 humanDescription:
 serializedVersion: 2
 human: []
 skeleton: []
 armTwist: 0.5
 foreArmTwist: 0.5
 upperLegTwist: 0.5
 legTwist: 0.5
 armStretch: 0.05
 legStretch: 0.05
 feetSpacing: 0
 rootMotionBoneName:
 rootMotionBoneRotation: {x: 0, y: 0, z: 0, w: 1}
 hasTranslationDoF: 0
 hasExtraRoot: 0
 skeletonHasParents: 1
 lastHumanDescriptionAvatarSource: {instanceID: 0}
 animationType: 0
 humanoidOversampling: 1
 additionalBone: 0
 userData:

Page 61

D4.2 - Final

 assetBundleName:
 assetBundleVariant:

2. mtl

a. mtl contains the material description for the certain obj.

The mtl is automatically imported and transformed into mat with the import script.
mat files are described below.

3. mat and mat.meta

a. mat contains the material description for Unity3D.
b. mat.meta contains the guid for the mat file.

Both mat and mat.meta are automatically generated with the import script.

4. Textures jpg and jpg.meta

a. A texture jpg is an image for the texture of the obj. The size of jpg should be
power of 2 and width should be equal to height.

b. A texture .jpg.meta is a text file containing the guid for the texture jpg.

Both texture jpg and texture jpg.meta are automatically generated with the import
script

5. Sprites jpg and jpg.meta
a. The sprite jpg is a plain jpg with no limitations in width and height
b. The sprite .jpg.meta should follow a certain pattern that denotes that the

image is sprite and its guid. The pattern is as follows where fileFormatVersion
and guid should be replaced in each sprite.

fileFormatVersion: 2
guid: c09f5d3bd5a1ac34cba9de90fcb13da1
timeCreated: 1500039473
licenseType: Free
TextureImporter:
 fileIDToRecycleName: {}
 serializedVersion: 4
 mipmaps:
 mipMapMode: 0
 enableMipMap: 1
 sRGBTexture: 1
 linearTexture: 0
 fadeOut: 0
 borderMipMap: 0
 mipMapFadeDistanceStart: 1
 mipMapFadeDistanceEnd: 3
 bumpmap:
 convertToNormalMap: 0
 externalNormalMap: 0
 heightScale: 0.25
 normalMapFilter: 0
 isReadable: 0

 textureType: 8
 textureShape: 1
 maxTextureSizeSet: 0
 compressionQualitySet: 0
 textureFormatSet: 0
 platformSettings:
 - buildTarget: DefaultTexturePlatform
 maxTextureSize: 2048
 textureFormat: -1
 textureCompression: 1
 compressionQuality: 50
 crunchedCompression: 0
 allowsAlphaSplitting: 0
 overridden: 0
 - buildTarget: Standalone
 maxTextureSize: 2048
 textureFormat: -1
 textureCompression: 1
 compressionQuality: 50
 crunchedCompression: 0
 allowsAlphaSplitting: 0
 overridden: 0

Page 62

D4.2 - Final

 grayScaleToAlpha: 0
 generateCubemap: 6
 cubemapConvolution: 0
 seamlessCubemap: 0
 textureFormat: 1
 maxTextureSize: 2048
 textureSettings:
 filterMode: -1
 aniso: 16
 mipBias: -1
 wrapMode: -1
 nPOTScale: 0
 lightmap: 0
 compressionQuality: 50
 spriteMode: 1
 spriteExtrude: 1
 spriteMeshType: 1
 alignment: 0
 spritePivot: {x: 0.5, y: 0.5}
 spriteBorder: {x: 0, y: 0, z: 0, w: 0}
 spritePixelsToUnits: 100
 alphaUsage: 1
 alphaIsTransparency: 0
 spriteTessellationDetail: -1

 - buildTarget: Android
 maxTextureSize: 2048
 textureFormat: -1
 textureCompression: 1
 compressionQuality: 50
 crunchedCompression: 0
 allowsAlphaSplitting: 0
 overridden: 0
 - buildTarget: WebGL
 maxTextureSize: 2048
 textureFormat: -1
 textureCompression: 1
 compressionQuality: 50
 crunchedCompression: 0
 allowsAlphaSplitting: 0
 overridden: 0
 spriteSheet:
 serializedVersion: 2
 sprites: []
 outline: []
 spritePackingTag:
 userData:
 assetBundleName:
 assetBundleVariant:

Appendix II: Compiling commands for desktop binaries.

Here we present information for compiling into desktop binaries.

In Windows server to Windows Binary: Place the following into a .bat file and execute it.

set mypath=%cd%

@echo %mypath%

"C:\Program Files\Unity\Editor\Unity.exe" -quit -batchmode -logFile stdout.log -projectPath %mypath%
-buildWindowsPlayer "builds\mygame.exe”

In Linux server (Ubuntu 16) to Windows Binary: Place the following into a .sh file and execute it.

#/bin/bash

projectPath=`pwd`

xvfb-run --auto-servernum --server-args='-screen 0 1024x768x24:32' /opt/Unity/Editor/Unity -batchmode
-nographics -logfile stdout.log -force-opengl -quit -projectPath ${projectPath} -buildWindowsPlayer
"build/mygame.exe”

Defining other outputs

To Mac binary instead of Windows binary: Replace -buildWindowsPlayer with -buildOSXUniversalPlayer,
and .exe with .app

To Linux binary instead of Windows binary: Replace -buildWindowsPlayer with -buildLinuxUniversalPlayer
, and remove the mygame.exe

Page 63

