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Abstract

We review the state of the art in game and learning analyƟcs and compare and integrate these find-

ings with the insights gained from the prior deliverables in the ENVISAGE project. We idenƟfy three

possible overarching approaches that can be explored in the ENVISAGE project: clustering, predic-

Ɵon, and simulaƟon of students and/or their behavior. Not all of these may be aƩainable for EN-

VISAGE, but at the current stage presents themselves as opƟons that should all be pursued and in-

vesƟgated. Methods for each approach are described and outlined in the deliverable and an iniƟal

framework is implemented as an on-line Deep AnalyƟcs Learning Service that the other components

developed in the ENVISAGE project can interface with.
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ExecuƟve Summary

This deliverable, consƟtuƟng the first part of WP3, addresses preliminary analyƟcs and course mate-

rial adaptaƟon. It reviews the state of the art in game and learning analyƟcs and compares and in-

tegrates these findings with the insights gained from the prior deliverables in the ENVISAGE project.

We idenƟfy three possible overarching approaches that can be explored in the ENVISAGE project:

unsupervised modeling, supervised modeling, and generaƟve modeling. RespecƟvely, these three

approaches can be thought of as represenƟng the clustering, predicƟon, and simulaƟon of students

and/or their behavior. Methods for each approach are described and outlined in the deliverable and

an iniƟal framework is implemented as an on-line Deep AnalyƟcs Learning Service that the other

components developed in the ENVISAGE project can interface with. An iniƟal evaluaƟon of the pros,

cons, and feasibiliƟes of the three approaches is provided and a way ahead for the remainder of the

project is outlined.
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AbbreviaƟons and Acronyms

ML Machine Learning

EDM EducaƟonal Data Mining

LA Learning AnalyƟcs
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1 IntroducƟon

This deliverable, consƟtuƟng the first part of WP3, addresses preliminary analyƟcs and course ma-

terial adaptaƟon. It takes the form of a demonstrator project, designed and built on the basis of

insights gained from a review of exisƟng approaches for deep analyƟcs for learning as well as games.

For this deliverable, we review the state of the art in game and learning analyƟcs and compare and

integrate these findings with the insights gained from the prior deliverables in the ENVISAGE project.

We idenƟfy three possible overarching approaches that can be explored in the ENVISAGE project:

unsupervised modeling, supervised modeling, and generaƟve modeling. RespecƟvely, these three

approaches can be thought of as represenƟng the clustering, predicƟon, and simulaƟon of students

and/or their behavior. Not all of these may be aƩainable for ENVISAGE, but at the current stage

presents themselves as opƟons that should all be pursued and invesƟgated in order to find the so-

luƟon that is most useful to teachers and other users of the ENVISAGE authoring tools. Methods for

each approach are described and outlined in the deliverable and an iniƟal framework is implemented

as an on-line Deep AnalyƟcs Learning Service that the other components developed in the ENVISAGE

project can interface with. An iniƟal evaluaƟon of the pros, cons, and feasibiliƟes of the three ap-

proaches is provided and a way ahead for the remainder of the project is outlined. In the following

secƟon, we start by reviewing the state of the art in the field of Game AnalyƟcs.
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2 Machine Learning for Game AnalyƟcs

Given that the ENVISAGE project takes as its premise thatmethods fromGame AnalyƟcs for commer-

cial entertainment games may successfully be transferred into the space of digital learning environ-

ments, this secƟon invesƟgates the state of the art in machine learning for Game AnalyƟcs. With an

outset in a recent comprehensive volume compiled by El-Nasr et al. [8], we provide a brief overview

over current approaches and state of the art in Game AnalyƟcs in the space of the commercial game

industry.

2.1 Game Data Mining

One approach to (predicƟve) game analyƟcs in the commercial game industry is to apply principles of

the well-defined Cross-Industry Standard Process for Data Mining (CRISP-DM) [8]. CRISP-DM defines

six steps of data mining for analyƟcal purposes that are general enough to be translated to any data

producing industry, including digital games. These six steps include:

1. Business/research understanding.

2. Data understanding.

3. Data preparaƟon.

4. Modeling.

5. EvaluaƟon.

6. Deployment.

The steps can be retraced iteraƟvely in a loop to refine the data-mining process. Below we visit each

of them in relaƟon to the ENVISAGE project.

2.1.1 Business/Research Understanding

This first step relates to idenƟfying the objecƟves and requirements of the general project and trans-

laƟng these into a data mining problem, or in ENVISAGE terminology, a Learning AnalyƟcs problem.

In the case of ENVISAGE, this represents a large part of the work that must be undertaken: under-

standing what consƟtutes the theoreƟcal and pracƟcal problems of understanding student behavior

and learning in digital learning environments. For the work presented in this deliverable, the prior

knowledge gained from deliverables D1.1, D1.2, D2.1, and D2.2 all provide the nearest source of in-

formaƟon for this step though further informed, naturally, from the original sources and data used

for these deliverables. In essence, the step consists of forming a clear understanding of how teach-

ers use digital learning environments with students, how students interact with them in context, and

what theoreƟcal prior knowledge can be leveraged to structure and make sense of observaƟons of

student behavior and development. The outcome of this process that most directly has fed into the

development of analyƟcs and course adaptaƟon methods is the idenƟficaƟon and definiƟon of the

base metrics that are also used for visualizaƟons in D2.3:

• Class Profile
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• Levels of Proficiency

• Time on Task

• Time to CompleƟon

• Travel Path

PredicƟng and opƟmizing for these metrics, or indicators of these metrics, can be seen as the end

operaƟonal goal of the analyƟcs and adaptaƟon methods developed through ENVISAGE.

2.1.2 Data Understanding

This second step deals more concretely with structuring and exploring the data that is gathered for

the modeling task. For the case of the ENVISAGE project, this involves observing data collected from

the digital learning environments and relaƟng this data to the objecƟves idenƟfied in D1.1 [16]. As

the data is being generated from tracking points defined and inserted into the digital learning envi-

ronments as part of the ENVISAGE project, described in D4.2 [17], this part of the process is relaƟvely

transparent for the ENVISAGE project since contains both the data generaƟon, analysis, and model-

ing parts of the process. Data understanding also includes early exploratory data analysis where the

raw data is examined to inform which modeling techniques might be appropriate.

2.1.3 Data PreparaƟon

Data preparaƟon pertains to the manipulaƟon of data into a form where it is ready for being entered

into the modeling step of the process. This may involve cleaning data by removing collected values

that represent test data or removing sessions that were not completed or otherwise unused or un-

wanted. It may also involve calculaƟng any values that may be staƟcally derived from the collected

data and will be used and reused during the modeling step. In the case of ENVISAGE, there is a need

for cleaning data from test data collected during the development process, and there is a need for

calculaƟng certain values derived from raw data, such as session lengths and Ɵme stamps between

events collected in the data set. Overall, however, the data preparaƟon step is relaƟvely manageable

for ENVISAGE, again due to the highly integrated nature of the project, which may be atypical for the

case of data mining.

2.1.4 Modeling

Modeling refers to the step where the preparaƟons of the three previous steps are leveraged to se-

lect appropriate data mining/modeling techniques and apply these to the prepared data materials.

A wide range of different techniques and algorithms may be employed, depending on the invesƟga-

Ɵve interest. Each of these must be run and calibrated in different ways, depending on the chosen

method.

In the case of ENVISAGE, the modeling techniques are chosen based on the interests determined

chiefly in D1.1 [16] and D1.2 [12]. Whenever a modeling process is completed, the resulƟng model

will typically be stored for applicaƟon to new results or predicƟon of new values based on updated
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data sets. In the case of ENVISAGE, the generated models will be stored and used to cluster stu-

dents and classes, and to predict the performance and behavior of individual students or groups of

students, in accordance with the interests idenƟfied in other deliverables. As new data becomes

available, the modeling process is usually reiterated, either automaƟcally or with manual interven-

Ɵon to update and inform the model with the newest observaƟons. Over Ɵme, this typically leads to

beƩer performing models with more accurate results.

2.1.5 EvaluaƟon

AŌer models have been created and stored they must be evaluated, not only in terms of their in-

ternal, technical metrics of performance, but also in the more general sense of whether the models

are reliable and valid. These terms pertain to, respecƟvely, whether the models measure what they

model consistently across the cases that they will be applied to and whether they in fact model what

they are intended to. The first quesƟon may be answered by applying the models to new data and

ensuring that the results derived conform to expectaƟons, for instance checking that cases that are

expected to yield similar or different results in fact do so. The second quesƟon may be more difficult

and can typically only be addressed in collaboraƟon with subject maƩer experts and end users. The

divisions or predicƟons obtained from themodelsmust be tesƟng against the theoreƟcal background

fromwhich theywere derived, external ground truth if any is available, and the evaluaƟon of the final

users of the models. In the case of ENVISAGE, validaƟon of the models will be highly dependent on

the collaboraƟon and feedback from pedagogical experts and teachers, represented in the consor-

Ɵum by the EA partner. This evaluaƟon will be possible when the models are deployed in the actual

interface in conjuncƟon with the authoring tool.

2.1.6 Deployment

The final step in CRISP-DM is the deployment of the developed models. Deploying models means

not only integraƟng them into the final technical soluƟon for which they are meant (in the case of

ENVISAGE as support to authoring tool users), it also means communicaƟng the use and meaning of

the model to the end user stakeholders (in the case of ENVISAGE, teachers). Successful communi-

caƟon to non-technical stakeholders typically means presenƟng results in an intuiƟve user interface,

supported by explanatory and training materials to support the user in cases of doubt.

2.1.7 AdapƟng the CRISP-DM process to ENVISAGE

In order to support predicƟve analyƟcs and course adapƟon in the authoring tool, the method de-

veloped for the ENVISAGE project must encode all of these steps into an automated process before

presenƟng it to the user of the authoring tool. While the predicƟve services being deployed for

the authoring tool may be updated in collaboraƟon with end users, the developers of the soluƟon

are not directly available to teachers or other authoring tool users on a day-to-day basis. This, in

turn, makes it imperaƟve that the analyƟcs developed for ENVISAGE are general enough to cover as

many potenƟal users of teachers in with specific pedagogical agendas, and with needs for insights

and adaptaƟon that cannot be fully predicted at the Ɵme of implementaƟon. This issue is further

addressed in SecƟon 4.
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In the following subsecƟons, we proceed to describe the technical aspects of the CRISP-DM pro-

cess as applied in game analyƟcs in greater detail. We define the terms and relate them to the EN-

VISAGE project for later use when we describe the modeling approaches chosen for the project.

2.2 Metrics and Telemetry

Metrics define higher-level constructs that say something of interest about the player base of a par-

Ɵcular game. They are built from measurements typically obtained through telemetry: the game’s

source code is augmented with tracking points that are triggered intermiƩently or by player acƟons.

These triggers produce events that are transmiƩed via the Internet to a server with the game devel-

oper. In the commercial game industry, metrics are usually defined iteraƟvely during the develop-

ment process. Telemetric trigger points are established early on in response to design intuiƟons or

experience on the part of designers and analyst. These are then amalgamated into metrics that are

made available through various interfaces. Eventually, as the game develops and nears compleƟon,

new metrics are defined from the available telemetric events, and more trigger points are added to

generate new events, in an iteraƟve design loop. This underscores that the quesƟons that are of

interest to the designers and developers of a game manifest themselves in concert with the game’s

development. The quesƟons that are of interest at the beginning of the development process are

typically different from the ones at the end of the process.

This is relevant to the ENVISAGE project, where the labs that are provided to authoring tool users

are reminiscent of commercial games near the final stages of development. The fundamental rules of

the labs are well-defined: pedagogical goals and the internal logic of the labs have already been con-

structed with parƟcular learning goals in mind, and the object of the authoring tool user is to change

the details of these labs to best support the learning of the parƟcular students that are interacƟng

with the strongly defined lab. This also means that the pre-defined metrics and analyƟcs included

in the predicƟve analyƟcs and course adaptaƟon methods must be pre-defined, as it is not realisƟc

that the end user of the authoring tool would be able to define new tracking points or implement

addiƟons to the exisƟng telemetry. This, however, presents us with a challenge: How may we, with-

out knowing the pedagogical approach or needs of a specific teacher, best support this teacher in

understanding how their students’ are using the virtual lab and how they might respond to changes

to the virtual lab. We address this challenge later in SecƟon 4.

2.3 Feature ExtracƟon

Once metrics are constructed from raw events obtained from telemetry data, they may be further

refined through a process of feature extracƟon. Feature extracƟon can take on several forms where

the simplest one is the approach of feature selecƟon: the most important metric for an analyƟc

goal are selected in order to only enter relevant metrics into an analysis. ENVISAGE makes extensive

use of this approach in the shallow analyƟcs part of the project, where the pre-defined metrics,

decided upon from pedagogical expert knowledge, are aggregated and visualized to end users of the

visualizaƟons and authoring tool.

A more advanced form of feature extracƟon is the derivaƟon of new features from either raw

telemetric data or the metrics informed by expert knowledge.
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2.4 Modeling

Modeling, the fourth step of the CRISP-DM process, defines the analyzing the collected raw data,

metrics, and extracted features to create insights that can be reported as insights upon which acƟons

can be taken. While the commercial game industry uses simple aggregaƟon and reporƟng of metrics

for most purposes, as ENVISAGE does in shallow analyƟcs, game analyƟcs is increasingly including

more advanced player modeling as well.

Player modeling involves using collected raw event data and metrics to construct more elaborate

groupings of player based on combinaƟons of their background informaƟon and behavior, such as

e.g. personas, or predicƟng future player behavior from their past acƟons.

Playermodeling is typically divided intomodel-based andmodel-free player categories [18]. Model-

based player modeling is a top-down process in the sense that theoreƟcal models about players are

used to inform the modeling process and structure conclusions drawn from the data. Model-free

player modeling is a top-down process where no a priori theoreƟcal model is used to make sense of

the data, but rather computaƟonal techniques are used to extract groupings and relaƟons found in

the observed data. Post-hoc, theoreƟcal insights may be used to interpret the found models. The

two may also be combined to accomplish syntheƟc player modeling, where theoreƟcal knowledge is

used to drive part of the modeling process, such as e.g. for feature extracƟon from raw data (as in

the case of predefined metrics), or to limit modeling outcomes to specific categories.

2.5 SpaƟal and Visual AnalyƟcs

A key trend in game analyƟcs is the spaƟal and visual presentaƟon of models using visual represen-

taƟon. For summary and aggregate reporƟng of simple metrics, this is typically accomplished using

dashboard like interfaces that present informaƟon in bar-charts, line-graphs, pie-charts, and flow-

charts like ENVISAGE does for shallow analyƟcs, as described in [10]. This also applies when these

metrics are used to group users or to predict future values.

For more advanced informaƟon, however, such as the reporƟng of player movements or acƟons

within the context of the game, game analyƟcs typically turns to visualizaƟon in context via the use

of heatmaps [8]. Heatmaps are color-coded overlays on top of screenshots or 3D-models of games,

typically levels, that show acƟons frequencies or intensiƟes across the space. While heat-maps have

the advantage of presenƟng rich informaƟon in a highly contextualized way, they have a high im-

plementaƟon cost, as they must be added to the actual engine responsible for the rendering of the

game, or must be mapped to screenshots for that engine. This is typically feasible in commercial

game producƟons where a single product is being developed, and a development team is available

to create a bespoke analyƟcs soluƟon for this game. Recently, game engines - including the Unity

game engine being used for ENVISAGE - have started shipping with support for heat-mapping built-

in. While sƟll requiring some effort on the part of the developer this may reduce the implementaƟon

cost of spaƟal and visual analyƟcs.

In the context of ENVISAGE heat-maps could be used to represent actual learner behavior in each

of the virtual labs, at the aggregate or individual level. However, rendering such visualizaƟons intel-

ligible to non-expert users could be challenging and the strategy should be evaluated with represen-

taƟve authoring tool users before being implemented.
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2.6 Summary

In this secƟonwe briefly reviewed the state of the art in commercial game analyƟcs and related these

to the ENVISAGE project. We showed how pracƟces in game analyƟcs follow the more general cross-

industry CRISP-DM model for data mining and how player modeling can be implemented to provide

analyƟcal insights within this model. We also showed how different kinds of machine learning find

applicaƟon in player modeling and how this informaƟon is typically communicated back to users

using contextualizing visualizaƟon strategies such as e.g. heatmaps. In the following secƟon we visit

current pracƟces and discussions in the educaƟonal data mining and learning analyƟcs communiƟes,

relate these to game analyƟcs in general, and provide examples of the use of game analyƟcs and

machine learning for adapƟve learning games.
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3 EducaƟonal Data Mining versus Learning AnalyƟcs

In [1], Baker and Inventado provide a useful overviewof the related research areas of Learning Analyt-

ics (LA) and EducaƟonal Data Mining (EDM).

CiƟng [14], they propose that the two are related, but take different approaches to understanding

the learning process and also take different approaches to leveraging data:

In that work, it was argued that there are five key areas of difference between the com-

muniƟes, including a preference for automated paradigms of data analysis (EDM) versus

making human judgment central (LA), a reducƟonist focus (EDM) versus a holisƟc focus

(LA), and a comparaƟvely greater focus on automated adaptaƟon (EDM) versus support-

ing human intervenƟon (LA).

In short, EDM has a greater focus on automaƟon and data oriented techniques, where learning an-

alyƟcs has a greater focus on informing human analysts and decision makers, but less of an interest

in encoding intervenƟon theories or invenƟon strategies directly into the developed soluƟon.

This is highly relevant to the ENVISAGE project, since the soluƟons developed for ENVISAGE in

essence aƩempt to take cues from both these research direcƟons: The shallow analyƟcs imple-

mented aim to inform and support the exploratory process of the teacher as they are using the au-

thoring tool. The deep analyƟcs, on the other hand, aƩempt to automate and predict behavior, but

rather thanmaking changes directly, the outcome of thesemodels are sƟll fed back to human analyst

who acts upon this informaƟon using the authoring tool. As such, ENVISAGE can be seen as bridging

these two approaches.

Since this deliverable is concerned with the methods implemented for deep learning analyƟcs,

we will briefly review techniques for EducaƟonal Data Mining, rather than Learning AnalyƟcs, and

relate these to the objecƟves of ENVISAGE.

3.1 EducaƟonal Data Mining Techniques

Baker and Inventado [1] divide the methods used in EducaƟonal Data mining into four overall cate-

gories:

• PredicƟon Models

• Structure Discovery

• RelaƟonship Mining

• Discovery with Models.

3.1.1 PredicƟon Models

PredicƟon refers to both classical staƟsƟcal tools such as classificaƟon and regression, but also more

recent approaches such as e.g. support vector machines, neural networks, or other techniques that

are capable of being trained tomap input values to outcome values. This corresponds to themachine

learning concept of supervised learning. Baker and Inventado note that supervised learning may be

useful in predicƟng a student’s future knowledge or performance on a task, which would also be a

typical applicaƟon in the ENVISAGE project.
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3.1.2 Structure Discovery

Baker and Inventado menƟon clustering, factor analysis, and domain structure discovery as typical

methods that can be applied to enable structure discovery. Structure discovery deals with finding

paƩerns in and divisions of data without having externally defined outcome values, in contrast to

what is available to predicƟonmodels. As such, the category corresponds closely to what in machine

learning is typically called unsupervised learning. In the ENVISAGE project, clustering would be a

relevant method, as the project already has a number of theoreƟcally moƟvated groupings of the

students that structure discovery methods such as clustering could help find in the collected data

sets.

3.1.3 RelaƟonship Mining

RelaƟonship mining is described as a category of methods that have the goal of finding relaƟonships

between variables in a dataset, but does not try to predict values or parƟƟon the data-set. This

includes classical approaches such as correlaƟon analysis as well as newer approaches such as se-

quence paƩern mining. RelaƟonship mining might be relevant as an analyƟcal tool where the results

are presented directly to the user as part of the shallow analyƟcs in ENVISAGE. AddiƟonally, relaƟon-

ship indicators such as correlaƟon coefficients are necessary supporƟng toolswhen doing exploratory

data analysis for building more complex deep analyƟcs models.

3.1.4 Discovery with Models

An emerging approach in EducaƟonal Data Mining is discovery with models [1]. The concept refers

to the applicaƟon of pre-developed models through clustering, predicƟon, or other methods such

as knowledge engineering via e.g. rule specificaƟon. The exisƟng models are used on new data-sets

and the results analyzed or fed in as secondary components to other models. The approach mirrors

tendencies in player modeling from game analyƟcs, where complex models of player behavior may

be used to characterize players, discover tendencies in games, and may be used as input to other

models or analyses [18] This approach is relevant to the ENVISAGE project as the successful modeling

of learning behavior might require the iniƟal grouping of students based on their behavior and a

subsequent predicƟon of their scores or behaviors inside the digital learning environments.
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4 Goals for PredicƟon and AdapƟvity in ENVISAGE

In this secƟon we relate the methods and approaches idenƟfied in game analyƟcs and educaƟonal

data mining to the needs of the ENVISAGE project, and idenƟfy a way ahead toward exploring and

idenƟfying which approaches are useful for ENVISAGE.

A challenge for the ENVISAGE project, as noted above in SecƟon 2.2, is that teachers may use the

implemented analyƟcs soluƟons for pedagogical intervenƟons or teaching purposes that are hard or

impossible to know ahead of Ɵme. To address this, the best thing the ENVISAGE project can do is

to maximally empower the teacher in the implementaƟon of analyƟcs, but supporƟng flexibility in

use. The ENVISAGE project aƩempts to maximize flexibility in the implemented methods by taking a

three-pronged approach to analyƟcs:

1. Event tracking is designed to communicate the maximal amount of informaƟon about not only

the choices that learning make in the virtual labs, but also the context for these choices, by

including as much informaƟon about the labs when choices were made.

2. High-level metrics are defined with a strong anchoring in pedagogical theory to make them as

generically useful, regardless of pedagogical interest.

3. Unsupervised, supervised, and generaƟve machine learning is implemented to provide infor-

maƟon within the context of each virtual lab, but leaves interpretaƟon and intervenƟon se-

lecƟon at the discreƟon of the authoring tool user, who is assumed to have the most relevant

domain knowledge.
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5 Chosen Machine Learning Algorithms

This secƟon describes the machine learning algorithms that are being explored for predicƟve ana-

lyƟcs and course adaptaƟon methods in ENVISAGE. Informed by the review in the secƟons above,

we are choosing to explore a number of player modeling approaches within unsupervised, super-

vised, and generaƟve methods. Some of these are tailored to communicate back to the users of the

authoring tool via visualizaƟons also used for shallow analyƟcs, while others are centered on pro-

viding informaƟon contextualized within the actual virtual labs which might later be combined with

contextual visualizaƟon techniques such as heatmaps.

5.1 Unsupervised Modeling

One goal of the ENVISAGE project is to understand how different students’ behaviors are indicaƟve

of different groupings within e.g. the whole student base or parƟcular classes. In the terminology

of EducaƟonal Data Mining, this is a Structure Discovery problem, which is a well-known class of

problems. For both Game AnalyƟcs and EducaƟonal Data Analysis, this is typically addressed by

applying clustering methods, that parƟƟon observaƟons into groups.

Two clustering algorithms will be aƩempted for the data sets collected from the virtual labs, k-

means and archetypal analysis. K-means allows for idenƟfying groups based on typical behavior.

Archetypal analysis, on the other hand, allows for idenƟfying groups based on extreme behavior. We

predict that both kinds of groupings may be of interest to teachers adapƟng virtual labs to suit their

needs.

5.1.1 K-means Clustering

For finding groups, the k-means clustering algorithm is a good candidate, which will be explored for

the virtual labs in the project. k-Means parƟƟons data into groups, or clusters, based on the distance

between observaƟons, given a predefined distance funcƟon, and clusters them around representa-

Ɵve points, known as centroids. These points may be calculated using either a mean measure or

a median measure. It requires us to define a number of clusters for this grouping and can provide

metrics of the appropriateness of different choices of numbers.

The algorithm starts iniƟalizing a number of random cluster centers equal to the number selected

by the use, and then assigns each of the observaƟon to the cluster which is closer (see Eq. 1):

S
(t)
i =

{
xp :

∥∥xp − µ
(t)
i

∥∥2 ≤
∥∥xp − µ

(t)
j

∥∥2 ∀j, 1 ≤ j ≤ k
}

(1)

It then proceeds to update the centers based on the memberships in these newly determined

cluster groups (see Eq. 2).

µ
(t+1)
i =

1

|S(t)
i |

∑
xj∈S

(t)
i

xj (2)

.

The goal is to minimize the objecƟve funcƟon (see 3) and the process of assigning observaƟons

to clusters and updaƟng the centroids may conƟnue unƟl no improvement is seen in the objecƟve
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funcƟon (or unƟl no more computaƟonal resources are available):

J =
N∑

n=1

K∑
k=1

rnk||xn − µk||2 (3)

The k-means algorithm has been used extensively and successfully in game data mining to aggre-

gate mulƟ-dimensional data describing player behavior and grouping players based on these behav-

iors.

When combined with e.g Principal Component Analysis, it also lends itself well to visualizaƟon

and allows for showing how different clusters are distributed relaƟve to one another along a reduced

number of abstract dimensions, as shown in e.g. Figure 1.

Figure 1: Example of k-means clustering of player behavior obtained from the game described in [9].

The figure delineates the player base into three groups, exhibiƟng different in-game behaviors.

5.1.2 Archetypal Clustering

Where k-means and the similar k-medoids focus on idenƟfying groups around average behavior in

the data, archetypal analysis is focused on idenƟfying extreme examples in the data. The algorithm

works by drawing the minimally possible convex hull around all the observed data points.
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Figure 2: A comparison between cluster locaƟon on the same data set from a gamewhen using either

k-Means (indicated by K’s) or archetypal analysis (indicated by A’s).

Using this hull, the algorithm searches for linear combinaƟons of the observed data points that

minimize 4 to determine coefficients that allow the data to be represented by the archetypes [2].

argminS,H
1

2
||X −XSH||2F (4)

ObservaƟons are then labeled according to their closeness to these archetypes, using a distance

funcƟon, much akin to the way observaƟons are labeled in k-Means.

When used in combinaƟon with k-means, archetypal analysis provides a useful alternaƟve per-

specƟve that allows the user to see hypotheƟcal extreme examples. This can help the user under-

stand the overall direcƟons of the behavior that the players of a game or the users of a digital learning

environment are exhibiƟng.

Figure 2 shows a comparison of cluster centers found using k-Means and archetypal analysis,

respecƟvely, when applied to the same dataset of player acƟons in a game.
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5.2 Supervised Modeling

Supervised modeling, in machine learning terms, corresponds to the PredicƟon Models category of

EducaƟonal Data mining. The fundamental premise of the approach is to configure/train a model

from an exisƟng dataset composed of input/output variables, and using this trained model later to

predict values for new observaƟons as needed. In the instance of ENVISAGE, this could means pre-

dicƟng PISA-group membership based on performance in a virtual lab, or it could mean predicƟng

subsequent test scores based off variables summarizing behavior in a virtual lab. A plethora of su-

pervised modeling techniques exist, ranging from simple regression to highly complex deep neural

network models. Choosing which one to implement may depend on the nature of the data in ques-

Ɵon and the parƟcular modeling problem. For ENVISAGE, however, we are focusing on choosing a

generally applicable method that can be expected to work well for most supervised modeling prob-

lems. For that reason we are iniƟally applying supervised modeling through neural networks. Neural

networks are characterized by being able to approximate any differenƟable funcƟon, provided they

are large enough and given enough training data and Ɵme [3], and thus may work as a general catch-

all approach for most necessary supervised modeling in the ENVISAGE project. The disadvantage

with using neural networks for supervised modeling is that the trained models are generally opaque

to human inspecƟon. I.e. other analyƟcal methods must be used in order to understand the model

represented in the network. This disadvantage has liƩle impact on the ENVISAGE project, however,

as only the outputs of the trained networks will be made available to the end users in the form of

teachers.

5.3 GeneraƟve Modeling

Reinforcement learning will be used to aƩempt the learning of agent policies for simulaƟng player

behavior in the ENVISAGE virtual labs. Prior research has shown that this approach can be used to

learn and generate user behavior shaped by preferences, using both evoluƟonary methods [9] as

well as reinforcement learning [5]. The first approach that will be aƩempted will be a transfer of the

method outlined in [9].

In this method, a configurable game-playing agent is developed and opƟmized to mimic human

behavior through evoluƟonary computaƟon. Agents may be evolved to match travel paths from

single players or to match groups of players belonging to the same group, as obtained from e.g. the

clustering algorithms outlined above.

In [9], this configurable agent is obtained by building the agent around a decision-making neural

network that decides what acƟon to take for each step of the simulaƟon.

The agent is connected to a simulaƟon of the game, or in this case, the digital learning environ-

ment. Simultaneously, acƟon traces from actual human players/users are collected and organized in

decision trees, represenƟng the players(’s) travel path through the digital environment. The weights

of the neural-network are then opƟmized through evoluƟonary computaƟon [13]. The agent is pre-

sented with all the contexts in which the human player made decisions in the travel path, and is

asked for its corresponding decision. For each decision that matches the human decision the agent

is awarded a point. Finally, when no more observaƟons remain, the agent’s AcƟon Agreement RaƟo

(AAR) relaƟve to the human player is calculated as shown in 5:

AAR =
Nmatch

Ndecision

(5)
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Figure 3: Example of an agent-controlling network, described in [9]. Similar networks will be exper-

imentally aƩempted for several of the ENVISAGE games, parƟcularly the Wind Energy Lab and the

Chemistry Lab.

Figure 4: IllustraƟon of how simulaƟons and acƟon comparisons can be used to calculate the AAR

value between the acƟons of a player and the acƟons of a game-playing agent supposed to represent

that player.

The acƟon agreement raƟo is then used as the fitness value for the agent in the evoluƟonary algo-

rithm. This evoluƟonary process is the run to maximize the AAR value across all the travel paths

that the agent is targeted to represent.

argmaxAAR (6)

The general principle is illustrated in Figure 4.
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6 SoŌware Architecture

The general soŌware architecture delivering predicƟve analyƟcs to the users of the authoring tools is

described inD4.2 of the ENVISAGEproject [17]. Herewedescribe the usedmachine learning libraries,

and their purpose in the predicƟve analyƟcs implementaƟon.

6.1 Machine Learning Libraries and ImplementaƟon

The soŌware stack shown in Table 1 is used to implement and explore the techniques described in

this secƟon:

Table 1: SoŌware libraries used for predicƟve analyƟcs and course adaptaƟon methods.

SoŌware Purpose Availability

pandas Provides uƟliƟes for data ac-

quisiƟon and manipulaƟon in

preparaƟon for modeling.

hƩp://pandas.pydata.org/

scikit-learn Provides the k-means and k-

mediods algorithms.

hƩp://scikit-learn.org/

rpy2 and R Provides the archetypal analy-

sis algorithm in R and provides

this to the general implemen-

taƟon via rpy2.

hƩps://rpy2.bitbucket.io/ and

hƩps://cran.r-project.org/

pyevolve Provides uƟliƟes for evolu-

Ɵonary algorithms.

hƩp://pyevolve.source-

forge.net/

keras and TensorFlow Provides neural networks for

supervised learning.

hƩps://keras.io/ and

hƩps://www.tensorflow.org/

The implementaƟons used to experimentally implement the unsupervised, supervised, and gen-

eraƟve models described in this document can be found at the following URL:

https://github.com/Envisage-H2020

Page 22



7 Conclusion

In this deliverable we briefly reviewed the state-of-the-art in game analyƟcs and learning analyƟcs

as they relate to the ENVISAGE project. We idenƟfied how these approaches and discussions relate

to the unique challenges faced by the ENVISAGE project, and how the idenƟfied principles can be

applied in the context of learning analyƟcs. AddiƟonally, we idenƟfied the major technical steps

involved in game analyƟcs and related them to the ENVISAGE project in order to understand how

they translate into Learning AnalyƟcs. Using insights into the problem of Learning AnalyƟcs gained

from the other deliverables of ENVISAGE, we idenƟfied a number of specific technical approaches

that can be employed in the ENVISAGE project to analyze, predict user behavior, and assist teachers

in adapƟng the virtual labs of the project accordingly. The approaches were described under three

general headings: unsupervised modeling, supervised modeling, and generaƟvemodeling. Whether

all of these approaches will be technically or logisƟcally feasible to implement under the ENVISAGE

project remains to be seen, but all of themwere idenƟfied as approaches potenƟally valuable to users

of the ENVISAGE authoring tool. Finally, we described the soŌware stack underpinning the modeling

iniƟaƟves described here and how the deployment of exisƟng open-source, scienƟfic frameworks

allows us to build a deep analyƟcs plaƞorm for the ENVISAGE project in the most efficient way.
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