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Abstract
The ini al work on deep analy cs in ENVISAGE was introduced in D3.1 with the focus on unsuper-
vised methods and approaches used in game analy cs. D3.2 now presents revised requirements
and updated algorithms tailored towards educa onal se ngs. We provide an extended overview
of “Educa onal Data Mining” and “AI in Educa on”, and we explain how exis ng approaches fit the
ENVISAGE project. We proceed by presen ng unsupervised and supervised learning algorithms for
deep analy cs within the educa onal context. The work on unsupervised learning extends D3.1 and
presents the clustering of students in the 2D Wind Energy Lab as an applica on. As examples for su-
pervised learning, we introduce the predic on of at-risk students and proficiency levels of students.
A er iden fying at-risk or low-performing students, the next step is to intervene and to help more
students to succeed. Here, one approach is to adapt coursematerial to be er fit the students’ needs.
Therefore, we present approaches for dynamic content adapta on and explain how virtual labs can
be adapted to personalize learning. Before presen ng our conclusion, we show examples from the
ENVISAGE pla orm and demonstrate the current capabili es of the deep analy cs components.
The informa on in this document reflects only the author’s views and the European Community is
not liable for any use that may bemade of the informa on contained therein. The informa on in this
document is provided as is and no guarantee or warranty is given that the informa on is fit for any
par cular purpose. The user thereof uses the informa on at its sole risk and liability.
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Execu ve Summary

The ini alwork onpredic ve analy cs in the ENVISAGEprojectwas introduced in deliverableD3.1 [16]
with the main focus on unsupervised methods and approaches used in games and game analy cs.
Deliverable D3.2 now presents revised requirements and updated algorithms tailored towards edu-
ca onal se ngs but also tested on games. We extend the overview on exis ng approaches in the
fields of “Educa onal Data Mining” and “AI in Educa on”, and we also explain how exis ng methods
from other areas need to be adapted to fit the ENVISAGE se ng.

We start by presen ng revised unsupervised learning algorithms in Sec. 3 which directly extend
the work in D3.1 [16]. We also present a case study in Sec. 3.2 which gives results on using differ-
ent clustering algorithms on student data obtained from the 2D Wind Energy Lab. We proceed by
presen ng supervised learning algorithms for deep analy cs within the educa onal context. Here,
we explain two different use cases where supervised learning can be used to personalize the user
experience in virtual labs. In par cular, we present a predic on of at-risk students and a predic on
of students’ performance within the Programme for Interna onal Student Assessment (PISA) 2012
framework for proficiency classes. We also explain the necessary data preprocessing and feature
engineering in detail. We do not only evaluate our algorithms on behavioral data from a chemistry
lab and the 3D Wind Energy lab, but we also apply our algorithms to player data from a well known
online game in order to validate the capabili es on a larger scale.

A er iden fying students at-risk or students who are predicted to have a lower performance,
the next step is to intervene and to support those students to succeed. One possible approach is to
adapt course material dynamically to be er fit their needs. Therefore, we look at dynamic difficulty
adjustment in Sec. 5 and explain how course material can be adapted to fit different segments of
students. As an example, we use methods from sta s cs andmachine learning, to adapt the content
in a chemistry lab. We explain in detail how the chemistry lab can be adapted to allow the educator
to define different learning strategies. We also describe different approaches that can be used to
test and validate different learning strategies to find the op mal strategy for a par cular lab. Since
the implementa on of the dynamic content adapta on is s ll on a prototype level for the chemistry
lab, we also provide a case study from one of GIO’s customers. This case study in Sec. 5.3.2 details
how dynamic difficulty adjustment can be used in quiz games to improve the user experience. Quiz
games can be related to educa onal se ngs easily and we pave the way for addi onal experiments
in learning environments.

Before presen ng our conclusion on the current efforts and mo va ng future work, we show
examples from the ENVISAGE pla orm and demonstrate the current capabili es of the deep analy cs
components. The descrip on of the demonstrator highlights how different deep analy cs algorithms
are already integrated into the authoring tool and shows how all pieces from the ENVISAGE project
interact with each other.
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Abbrevia ons and Acronyms

AI Ar ficial Intelligence

AIEd Ar ficial Intelligence in Educa on

ANN Ar ficial Neural Network

ANOVA Analysis of Variance

API Applica on Programming Interface

BnS Blade & Soul

CIG Computa onal Intelligence in Games

DDA Dynamic Difficulty Adjustment

EDM Educa onal Data Mining

GDPR General Data Protec on Regula on

GPU Graphics Processing Unit

GTM Google Tag Manager

JSON JavaScript Object Nota on

JSONP JavaScript Object Nota on with Padding

KPI Key Performance Indicator

LMS Learning Management System

MAB Mul -Armed Bandit

MMORPG Massive Mul player Online Roleplay Game

MOOC Massive Open Online Course

PII Personally Iden fiable Informa on

PISA Programme for Interna onal Student Assessment

SDK So ware Development Kit

UCB Upper Confidence Bound
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1 Introduc on

The goal of the ENVISAGE project is to improve virtual labs through a structured and data-driven pro-
cess. First, this requires data from the learners, i.e., the students of virtual labs. This data is then
analyzed and prepared to be used by educators. Next, an authoring tool is required that is capable
of adap ng exis ng virtual labs based on the insights from the data analysis. The deliverable at hand
focuses on the data analysis and insights that can be automa cally obtained from the data. While
work package 2, e.g., deliverables D2.2 [25] and D2.3 [15], were concerned with shallow analy cs,
this deliverable focuses on deep analy cs, i.e., using algorithms to analyze and understand behav-
ioral data from students automa cally. This deliverable describes the con nua on of the work on
deep analy cs presented in deliverable D3.1 [16]. While D3.1 focused on unsupervised learning, the
deliverable at hand extends the deep analy cs part of the ENVISAGE project to addi onal types of
machine learning. Addi onally, this deliverable introduces approaches for content adapta on, allow-
ing teachers to change the configura on of a virtual lab in order to test different learning strategies
and to incorporate insights from the data analysis.

When talking about deep analy cs, it is important to dis nguish between different types of ma-
chine learning. Among other characteris cs, machine learning differen ates between unsupervised
and supervised learning to discover pa erns in data. Unsupervised Learning does not require any
labeled data and can cluster students for example in different groups without knowing these groups
in advance. On the other hand, Supervised Learning requires annotated datasets in order to learn
a model. In classifica on tasks, these labels categorize students in previously known groups. For
example, one can build a dataset for training an algorithm with two labels by classifying students if
they passed an exam or failed. Besides unsupervised and supervised learning, another form of ma-
chine learning exists which is called Reinforcement Learning. Here, the algorithm learns from ac ons
and their rewards, i.e., there is not a gold set of annotated labels available in advance but a reward
func on instead that scores different ac ons. Different use cases require different types of machine
learning and in this deliverable, we provide examples for each se ng. For example, unsupervised
learning is used to cluster students into different groups depending on their learning behavior in
Sec. 3. Supervised learning is used to detect at-risk students and the learnedmodels provide insights
into the root causes of students losing interes ng in a virtual lab in Sec. 4. Lastly, when designing
new strategies to personalize and improve learning, there is no knowledge in advance how these
new strategies perform. Here, and in the automa on of the en re process, different forms of rein-
forcement learning can be used as mo vated in Sec. 5.

Deliverable D3.1 already covered unsupervised learning for educa onal purposes. For example,
it was described in Sec. 5 how k-means and archetypal clustering can be used to group students.
Here, we present first results on using those algorithms on virtual lab data. To be more precise,
the case study in Sec. 3.2 describes how data from the 2D Wind Energy Lab can be used to cluster
students. This highlights how the past months have been used to ac vely transfer approaches from
the gaming industry to the educa on sector. As the case study shows as well, the algorithms are
equally applicable in educa on and result in interes ng insights into the learner’s behavior.

We will proceed as follows. First, we will summarize the efforts of the communi es in Ar ficial
Intelligence (AI) and Machine Learning when it comes to applying these algorithms in educa on and
e-learning. Next, we will present the advancements of the unsupervised learning approaches as a
sequel to deliverable D3.1. This includes one case study on virtual lab data. In the following sec on,
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we will describe in detail how supervised learning is used to predict at-risk students and students’
performance. This includes three case studies giving results on the algorithmic capabili es. A er-
wards, our approach to dynamic content adapta on is presented andwe also give two examples how
virtual labs can benefit from the adapta on. Before giving an outlook on the next steps, we provide
the reader with an extensive descrip on of the demonstrators and provide sufficient instruc ons so
that the results can be tested and verified.
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2 Analy cs and AI in Educa on

When reviewing ongoing research and available products for deep analy cs, different terminologies
can be observedwhichwere established over the past years. A few years ago, BigDatawas hyped and
in par cular companies were referring to this term. This wave set the expecta on that large amounts
of data would generate insights previously not available. There are plenty of books describing how
Big Data can help to improve learning in school and higher educa on. From the Big Data hype, two
research communi es evolved: Educa onal Data Mining (EDM) and Learning Analy cs [29, 4]. In
D3.1 [16], the differences between EDMand Learning Analy cswere discussed in detail. In a nutshell,
EDM is a more automated approach to gain informa on from educa onal datasets, and Learning
Analy cs is a tool that helps (educa onal) analysts to interpret the data. In recent years, AI has
become more popular again and people start to rephrase technologies in terms of AI to possibly
reach a wider audience and to gain more trac on. For example, algorithms from data mining are
also o en applied in AI scenarios.

As D3.1 also men oned, the gaming industry is typically a few years ahead of other industries
and in par cular ahead of the educa on sector. AI and data-driven thinking is slowly becoming the
status quo [37]. A lot of service providers in themarket offer different technologies to personalize the
gaming experience. Among other companies, deltaDNA1 and Op move2 offer services to enhance
games with help of AI and machine learning.

In contrast, there is a big gap in the usage of such technologies in the field of educa on. Mostly
former researchers are building pla orms and so ware that is capable of closing this gap. It is also
important to dis nguish between the markets in the United States and Europe. With the EU General
Data Protec on Regula on (GDPR), e.g., Ar cle 22 (“Automated individual decision-making, includ-
ing profiling”), it will getmore challenging for European educa on ins tu ons to implement adap ve
learningmechanism. TheGDPRwill establish high standardswhen it comes to data tracking and using
such data for personaliza on. It will be necessary to obtain the consent of a learner when mecha-
nisms are implemented that are applying automated decision-making based on personal informa-
on. Of course, when tracking children and teenagers in schools, this topic is even more sensi ve

and parents’ consent is necessary to comply with privacy protec on standards.
Visi ng important trade shows in e-learning and digital educa on also underlines that the educa-

on sector is o en inspired by technologies used in gaming. For example, Virtual Reality is certainly
a rac ng a lot of a en on in educa on, while the gaming industry has been pushing this technology
for several years by now3. Addi onally, learning apps in form of quizzes are also quite prominent. Of-
ten Learning Management Systems (LMSs) are extended to feature quiz apps to make learning more
mobile and provide another engagement opportunity with the course material.

Returning to the discussion about different terminologies, one will certainly no ce that there is a
big overlap. For example, machine learning can be seen as a subfield of AI. Algorithms used in data
mining, such as clustering or classifica on, are certainly found in machine learning as well. However,
datamining also lends itself to Big Data and analy cs, as sta s cal methods are used to detect trends
in data and to extract ac onable insights. While analy cs typically s ll involves a lot of human labor,
AI stands for an automated processing of data, offering insights that were not accessible to humans

1http://www.deltadna.com
2http://www.optimove.com
3http://blog.goedle.io/2018/02/01/trends-in-digital-education-at-learntec-2018/
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before, and predic ng future behavior.
In 2016, Pearson and the UCL Knowledge Lab published the open idea report Intelligence Un-

leashed [4] which discussed the opportuni es and future development of Ar ficial Intelligence in Ed-
uca on (AIEd). The report describes three kind of AIEd models. First, the pedagogical model which
represents the knowledge and exper se of teaching. Second, the domain model which represents
the knowledge of the subject that is being taught. And third, the learner model which represents
the knowledge of the learner. Within the ENVISAGE project, there are intersec ons with all of those
three models which is also highlighted by the composi on of the consor um. The report also de-
scribes two AIEd applica ons. First, predic on of at-risk students which is already used in schools
and universi es. Second, a model-based adap ve tutor that has a content adapta on module.

It should be clarified that the predic on of at-risk students is not available as an out-of-the-box
solu on. However, there are two service providers on the market which are ac vely adver sing the
predic on of at-risk students. On the one hand, the open source LMS Moodle4 and on the other
hand the commercial company Blackboard5. The full adap ve tutor as envisioned in [21] as an AIEd
applica on is to the best of our knowledge not implemented in any products yet. The content adap-
ta on process has similari es to the Dynamic Difficulty Adjustment (DDA) which is currently being
developed for content adapta on in the ENVISAGE project. The main difference is that the content
adap on within ENVISAGE is a more generalized approach that adapts content based on behavioral
informa on, not only based on domain knowledge. Sec. 4 will show how predic on of at-risk stu-
dents is implemented and Sec. 5 explains how the content adapta on works in a virtual lab.

2.1 Recap of the AIEd market

Beside Moodle and Blackboard, there are other companies focusing on building a bridge between
machine learning and educa on. A few successful examples are presented in the following. Mindojo6

and CENTURY7 are both pla orms that provide AIEd in general. There are also more specialized com-
panies, especially for subjects such as math, where a couple of companies are using AI for educa on.
One example is ScreenTime Learning8, an app that was released in December 2017 to prevent an
excessive usage of smartphones and tablets by children. A child gets a math task which then locks
the screen un l it is solved. ScreenTime Learning uses DDA to adjust the difficulty of the math tasks
for a child. Addi onal examples are the online courses by Trueshelf9 or be ermarks10. Both offer
adap ve learning in their courses which directly integrates in their learning material. Adaptemy11 of-
fers custom solu ons for adap ng educa onal content for learners. We will provide more examples
in the sec ons below for par cular use cases and applica ons.

4https://www.moodle.org
5https:/www.blackboard.com
6https://www.mindojo.com
7http://www.century.tech
8https://www.screentimelearning.com
9https://www.trueshelf.com

10https://www.bettermarks.com
11https://www.adaptemy.com
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2.2 Restric ons in School Se ngs

One has to be careful when it comes to privacy regarding the analysis of a learner’s behavior. Espe-
cially informa on about children are very sensi ve. All analysis, methods, and so ware presented,
make use of telemetric data but do not require personal informa on. By avoiding any kind of Person-
ally Iden fiable Informa on (PII) or demographic informa on, the privacy of children is respected.
In many cases, anonymous data is already sufficient to gain valuable insights that help the educators
to improve the quality of the course. Addi onally, insights on the level of groups of students can be
informa ve without harming the privacy of individuals.
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Figure 1: A comparison between cluster loca ons on the same dataset from a game when using
either k-means (indicated by K’s) or archetypal analysis (indicated by A’s).

3 Unsupervised Learning

Unsupervised learning was themain approach adopted for the 2DWind Energy Lab as presented and
detailed in D3.1 [16]. In this sec on, we present the algorithms adopted and detail their applica on
to the 2D Wind Energy Lab. A key goal of ENVISAGE is to understand how different students’ behav-
iors are indica ve of different groupings within, e.g., the whole student base or par cular classes. In
the terminology of EDM, this is a Structure Discovery problem, which is a well-known class of prob-
lems. For both, game analy cs and educa onal data analysis, this is typically addressed by applying
clustering methods, that par on observa ons into groups. Two clustering algorithms have been
employed for the datasets collected from the virtual labs: k-means and archetypal analysis.

In brief, k-means allows for iden fying groups based on typical behavior whereas archetypal anal-
ysis, allows for iden fying groups based on extreme behavior. While both types of groupings may be
of interest to teachers adap ng virtual labs to suit their needs, archetypal analysis turned out to be a
far more useful approach to clustering as it manages to be er separate students within meaningful
classes as mapped to the PISA 2012 categoriza on. The next sec on describes the final algorithm
used.

3.1 Archetypal Clustering and Analysis

While k-means and similar algorithms such as k-medoids focus on iden fying groups around average
behavior in the data, archetypal analysis is focused on iden fying extreme examples in the data. The
algorithm works by drawing the minimally possible convex hull around all the observed data points.
Using this hull, the algorithm searches for linear combina ons of the observed data points that min-
imize Eq. 1 to determine coefficients that allow the data to be represented by the archetypes [5]:

Page 13



Figure 2: k-means in the 2D Wind Energy Lab. The cluster labels assigned are as follows III: Reflec-
ve/communica ve (class number 4); II: Advanced (class number 2); I: Beginner (class number 1);

<I: No problem solver (class number 3).

argmin
S,H

1

2
||X −XSH||2F (1)

Observa ons are then labeled according to their closeness to these archetypes, using a distance
func on, much akin to the way observa ons are labeled in k-means. When used in combina on
with k-means, archetypal analysis provides a useful alterna ve perspec ve that allows the user to
see hypothe cal extreme examples. This can help the user understand the overall direc ons of the
behavior that the players of a game or the students in a digital learning environment are exhibi ng.
Fig. 1 shows a comparison of cluster centers found using k-means and archetypal analysis, respec-
vely, when applied to the same dataset of player ac ons in a game.

3.2 Case Study: 2D Wind Energy Lab

Fig. 2 and Fig. 3 show a comparison of cluster centers found using k-means and archetypal analysis
when applied to the same dataset of player ac ons in the 2D Wind Energy Lab. Both algorithms
consider the following shallow analy cs and tasks defini ons (ad-hoc designed metrics) as described
in D2.4 [12].

Time-on-task This metric measures the me it took the students to reach correct power from a state
of being either under or over powered.

Correct power The amount of me the student has the wind simula on correctly powered.

Over power The amount of me a student has the wind simula on over-powered.
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Figure 3: Archetypal analysis in the 2DWind Energy Lab. The cluster labels assigned are as follows III:
Reflec ve/communica ve (class number 2); II: Advanced (class number 1); I: Beginner (class number
4); <I: No problem solver (class number 3).

Under power The amount of me a student has the wind simula on under-powered.

Based on the above in-lab on-task behaviors, learners are clustered into four typical groups (PISA
2012 classifica on; D1.1 [32]) by either method. In par cular, the four clusters are as follows:

• III: Reflec ve/communica ve

• II: Advanced

• I: Beginner

• <I: No problem solver

The difference in the way the two algorithms operate is rather visible from Fig. 2 and Fig. 3. The
figures display the clusters as determined by the two algorithms and the data points within the four
feature planes, which are projected onto the two-dimensional figure via principal-component anal-
ysis. We use this case study example to demonstrate the advantages of archetypal analysis over
k-means in the task of automa cally clustering learners according to their performance in the 2D
Wind Energy Lab (PISA classifica on). As it is directly observable from Fig. 2, k-means places only
two learners who under-power theWind Energy Lab in their own category (category 3 in green color
or PISA class >I), since they are rather dissimilar from the rest of the group. In general, k-means tends
to place most students within the center of the hypersphere as this is the way the algorithm oper-
ates. In our par cular domain, most students perform alike and that results in crowded data points
for k-means to cluster. This shows coherence in the class, but does not show trends.
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Figure 4: The four PISA clusters depicted as a pie chart in the visual analy cs dashboard. For more
details about the visual analy cs service please refer to D2.4 [12].

In contrast, archetypal analysis, as displayed in Fig. 3, correctly iden fieswhich direc ons learners
are veering in, and assigns a group of students to the “low-performing” category (category 3 in green
color or PISA class <I) and correctly iden fies studentsmoving toward the “high-performing” category
(category 2 in red color or PISA class III). It is important to note that archetypal analysis, in contrast to
k-means, is able to iden fy two groups of learners who (groups 3 and 4) underperformed in different
ways: the first is over-powering the wind energy whereas the la er is under-powering the lab.

Also no ce in Fig. 3 that me-on-task is inversely related to correct power, whereas under/over-
powered is unrelated. In a nutshell, Fig. 3 illustrates that good students are faster than average/poor
students, but slow speed does not tell us what kind of errors a student would make. This example
dataset validates that me-on-task is a good indicator of performance and learnability. In par cular,
lower me-on-task predicts be er performance.

Given the above qualita ve characteris cs and benefits of archetypal analysis over k-means in
the Wind Energy Lab domain, we opted for the former approach for clustering learner performance
in virtual labs. The cluster membership (<I to III) distribu on is reported back through the analy cs
service to the visualiza on front-end. A depic on of the service is shown below in Fig. 4. The imple-
menta ons used to experimentally realize the unsupervised models described in this document can
be found at the following URL:

https://github.com/Envisage-H2020/Analytics-Server

It is important to note that the unsupervised learning approachwas adopted only for the 2DWind
Energy Lab and not for its 3D version given the substan al differences between the two labs. In the
supervised learning sec on, we detail the deep analy cs approach employed for the 3DWind Energy
Lab (Sec. 4.5.3).
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4 Supervised Learning for Educa onal Scenarios

In deliverable D1.1 [32], it was discussed that sta s cs from shallow analy cs like me-on-task can be
combined with deeper analy cs to provide insights to a student’s learning process. For example, an
at-risk student predic on supports the iden fica on of learners who are not going to con nue using
a virtual lab or having troubles following the course material. This leads to insights about students
where one knows in advance that a learner gets stuck or does not finish parts of the solu on. With
such a forecast of students’ behavior, it is possible to pro-ac vely support the students by improv-
ing their achievements and success. Two examples for proac ve ac ons are (human based) support
through blended learning or with (machine based) content adapta on. The content adapta on ap-
proach is described in Sec. 5. Another use case for supervised learning in educa on is predic ng
students’ performance. To simplify the problem formula on, one can map the scores of students to
the PISA 2012 categories. By doing so, each student gets a label based on the achieved score. Af-
terwards, one can learn a model that predicts which students fall in which PISA 2012 category based
on their behavior. In this sec on, we describe those two use cases for supervised learning in greater
detail. Before doing so, we give an overview on current approaches in this area. We finalize this
sec on by presen ng three case studies that show first results on using the algorithms on real-world
data.

4.1 State-of-the-Art

At-risk student predic on is quite similar to churn predic on. In the gaming industry or telecommu-
nica on industry, churn predic on has been applied for years, if not decades. This is originated by
the fact that reten on is one of the most important Key Performance Indicators (KPIs) in these ar-
eas. Also in the academic research, churn predic on has been analyzed for years, while predic on
of at-risk students in virtual labs is rela vely new. The at-risk student predic on has already found
its way in the industry, with companies offering it as a service. Performance predic on of students
is a research field that has not found its way into products like at-risk student predic ons yet. But,
there are a lot of academic research projects which cover this topic. These focus mainly on higher
educa on though. The state-of-the-art sec on gives an overview about churn predic on in other in-
dustries and the predic on of at-risk students in educa onal se ngs. Addi onally, a brief overview
about the current academic research on performance predic on is provided.

4.1.1 Academic Research

Because of the strong similarity between learners’ behavior in virtual labs and players’ or customers’
behavior in games or apps, different resources were taken into account to develop predic ons of
at-risk students. Predic ng churn has a long history. For example, in 2000 Mozer et al. [27] already
publishedwork on churn predic on for a telecommunica on carrier. Amore recent publica on about
churn predic on in a se ng more similar to virtual labs can be found in [14]. Here, player churn
in free-to-play mobile games was analyzed and predicted. The work in [14] also inspired the basic
features which were used in the following sec ons. Addi onal inspira on for features, more focused
on educa onal data, can be found in the literature about community inquirymodels. This is also used
byMoodle in their module for predic on of at-risk students. Inspired by the work from Garrison et.
al [11], the features are based on three pillars: cogni ve presence, social presence, and teacher
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presence. Also the work by Marks et al. [23] and Slavin et al. [31] describe how important me on
task is. This fact has also been acknowledged in previous deliverables within the ENVISAGE project
(cf. D1.1 [32] and D1.4 [24]).

In e-learning, the informa on about at-risk students is very important. Prior knowledge about
students possibly dropping out can be used to increase reten on by taking proac ve measurements
to prevent the dropout from actually happening. In 2009, Lykourentzou et al. [22] applied machine
learning on data fromMassive Open Online Courses (MOOCs) to predict dropouts in online courses.
Kai et al. [18] used student interac on data from online courses to build predic on models. These
models predicted at-risk students and the future student registra on behavior for online courses.
The second use case is rather a conversion predic on, i.e., the predic on if a student will enroll for
a course in the future. A conversion predic on can also be used to predict if a student passes an
exam or not. In more advanced se ngs, this can be extended to even predict a student’s score or
grade in an exam. Having such informa on at hand can further help to improve students’ success rate.
Imagine having a list of students available a fewweeks ahead of an exam that indicates which student
could benefit from addi onal help. Most of the research on this topic is done with higher educa on
ins tu ons or online courses. Along those lines, Al-Seleem et al. [2] build a model that predicts a
student’s grade based on their academic records. The work by bin Mat et. al [6] covers student
performance predic ons in distance higher educa on. The authors also discuss the effec veness
of ac ve learning methodologies in predic ng student’s behaviors. Shahiria et. al [28] present a
systema cal review of the literature on predic ng student’s behavior. This work covers approaches
on predic ng a student’s performance and evaluates different algorithms.

4.1.2 Industrial Approaches

Moodle, one of the most frequently used open source LMS, has integrated an at-risk student predic-
on in their 2017 released version 3.412. The predic on of at-risk students is integrated in the core of

the so ware. The results of the predic ons are binary, i.e., either a student drops out of a course or
remains an ac ve member. Besides these results,Moodle offers opportuni es to reach out to at-risk
students to influence their behavior in a posi ve way.

Amore business oriented applica on is offered by Blackboard13 since 2016. The solu on is called
Blackboard Predict and is currently in a beta phase. It is planned to be released in Q1/Q2 2018.
Blackboard is a full service provider for digital educa on. This includes communica on services for
different stakeholders (e.g., teacher, student, or parent) and an LMS among other solu ons. Their
website provides a full catalog of products and services14. A deeper look at Blackboard Predict in
par cular shows interes ng applica ons. Blackboard Predict consists of three parts:

• predic on

• visualiza on of results

• communica on for engagement

12https://docs.moodle.org/dev/Moodle_3.4_release_notes
13http://blog.blackboard.com/introducing-blackboard-predict/
14https://www.blackboard.com
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Figure 5: The process pipeline for at-risk student predic ons.

Blackboard describes in their blog that they are aiming at a shi in perspec ve andwant to focusmore
on behavioral informa on. Their argument is that there are no at-risk students in general, instead
students are classified as being at-risk of not finishing a task. This defini on does not only integrate
be er in an educa onal se ng, it also points out the limita ons of predic ons and frames the at-risk
predic on as a tool to improve so ware-based learning. Moodle’s predic on of at-risk students and
Blackboard Predict have one thing in common, both approaches heavily rely on meaningful features.
In turn, the availability of these features strongly depends on a well implemented tracking and clean
datasets with behavioral data about students.

Moodle offers a predefined set of features and provides an internal tracking. This allows to create
a model which can be applied within the Moodle LMS but at the cost of flexibility. One should also
note that it is only possible to make at-risk predic ons on a course-level at the moment. However, in
Moodle one can add custom predic ons and the en re predic on code is open source. While there
is an Applica on Programming Interface (API) for adding data and crea ng new features, one should
not underes mate the necessary expert knowledge in machine learning and so ware development
to make use of these features. In comparison toMoodle, Blackboard’s offerings are more focused on
consul ng. For example, they help to iden fy and build features for custom predic ons. One should
also highlight that Blackboard Predict is not limited to their own pla orm. They also offer solu ons
forMoodle, for example at-risk predic ons are part of X-Ray15which is Blackboard’s learning analy cs
suite forMoodle. Besides that, one can also integrate Blackboard Predict into custom solu ons. They
support a customer from defining a predic on, over tracking and aggrega ng the data, learning the
model, and lastly using the predic ons from the model for proac ve measures. In the next sec on,
we will give more details on the at-risk student predic on model in ENVISAGE.
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Figure 6: The figures explains the observa on window and churn window used in building the
dataset.

4.2 Predic on of At-Risk Students

Similar approaches to an at-risk student predic on are also used in the gaming industry, as well as
for many other apps where reten on is a crucial KPI. In gaming, one typically refers to churn pre-
dic on and in human resources departments, people refer to the predic on of employee turnover.
Games and other industries provide many different approaches to keep players, users, or customers
engaged. These methods range from basic interac ons, over automated reminders, to the en re
personaliza on of communica on and the individualiza on of content.

While the gaming industry has been u lizing churn predic on for years, there are only a few
serviceswhich offer a predic on of at-risk students aswe have seen in the previous sec on. While the
solu on to the predic onproblemmaybe technically similar, the surrounding condi ons in educa on
differ significantly. The at-risk predic on tries to classify learners who will stop using a virtual lab, fail
an exam, or cancel an en re course or degree. In the following, we present a process pipeline for the
predic on of at-risk students developed for the ENVISAGE project. The pipeline is depicted in Fig. 5.

We now describe the different components for the at-risk student predic on. It starts with the
process of collec ng or impor ng the data, box 1 in Fig. 5. A erwards, the feature extrac on process
is triggered (box 2). Following this, the data is preprocessed (box 3) for being used inmachine learning
algorithms. The resul ng data is then used as input for different classifica on algorithms (box 4).
Lastly, the predic ons are inferred based on the learned model (box 5). In Sec. 4.5.1 and 4.5.2, we
will present two case studies that make use of the ENVSIAGE pipeline. The first case study is based
on a virtual chemistry lab that was described in D1.1 [32] and the second case study is based on
gaming data which is in its nature very similar to a virtual lab. Addi onal gaming data was taken into
account, as the amount of data resul ng from the virtual lab was limited at the point of wri ng this
deliverable.

As we have previously described, being an at-risk student indicates a high likelihood of not com-
ple ng a certain course, task, or stopping to learn. The predic on of at-risk students is based on su-
pervised learning algorithms. Supervised learningmeans that the algorithm requires labeled training
data. Therefore, historical data is needed. This means one needs data from the past that provides
informa on about students that canceled their ambi ons to learn for a course or exercise.

15https://www.blackboard.com/education-analytics/xray-learning-analytics.html

Page 20



A possible labeling process looks like the one given in Fig. 6. Users are observed over a span of
two weeks in total. Assuming, one wants to predict the at-risk students a er one week, the “churn
window” amounts to seven days. Correspondingly, we refer the “observa on window” as the first
seven days of the total me span of two weeks. To construct labeled training instances, one uses
students’ data from the first week to construct features and checks if they are ac ve in the second
week to label them. Students who are not ac ve in the secondweek are labeled as “at-risk students”,
i.e., true. Those who are ac ve in the second week are labeled as false. This corresponds to the
binary classifica on which is used inMoodle as well. But, there is one pi all regarding the PISA 2012
framework. On average, 10% of the learners have a high proficiency level. Some of these learners are
very likely to not return to the lab because they do not require as much learning me compared to
the average student. The algorithm now possibly iden fies such learners as at-risk students because
they are less likely to return. Adding addi onal learning content is not appropriate for them, as
they are already performing well. For that reason, one should take performance into account before
automa ng decisions or making content adapta ons.

4.2.1 Data Import, Feature Extrac on, and Preprocessing

Before the feature extrac on can begin, the data has to be imported and prepared for the extrac-
on process. Typically, data has to be aggregated on a user level and sorted chronologically. O en,

addi onal meta data is added to the user profiles from external sources. For example, resolving IP
addresses to loca ons. The quality of the feature extrac on depends on the number of events and
a ributes, as well on a proper tracking which is the basis for obtaining the data. O en, data comes
from different pla orms and sources. For example, in the ENVISAGE project virtual lab data can be
received from a Google TagManager (GTM) integra on or from the ENVISAGE Unity So ware Devel-
opment Kit (SDK). The data format and tracking scheme, which applies to GTM and the Unity SDK, is
described in D2.1 [13]. Once the data has the appropriate format, the data aggrega on and augmen-
ta on process is started. This process is also described in detail in D2.1 [13]. The case study about
at-risk students in Sec. 4.5.1 and the churn predic on case study in Sec. 4.5.2 are both depending on
this data aggrega on and data augmenta on process. The student performance predic on used the
raw data directly and applied an addi onal preprocessing for the feature extrac on. This is described
in more detail in the case study in Sec. 4.5.3.

Features are the core of a machine learning model. They describe and represent the behavior
of a student. The algorithms use features and their weights to build a model. An example feature
is the count of a certain interac on. In the chemistry lab, this could be the informa on on how
o en a learner has added a bonding. Another feature could be the me between two sessions.
This so called “inter-session me” is typically averaged over all sessions. An increasing inter-session
me o en indicates at-risk behavior. If enough learners have been observed, we can learn a model

based on the features. The model can then classify if a learner is at risk of not coming back. The
model will internally represent certain rules for different behaviors. For example, if learners, who
are coming back frequently, have o en added a bonding, the feature indica ng the count of this
event will have a strong impact, when discrimina ng those learners from at-risk students. A lot of
the features are inspired by the work in [14, 30]. Based on GIO’s pla orm, the ENVISAGE project has
a large toolbox of features at its disposal. For the educa onal se ng, and based on the educa onal
relevant parameters proposed in D1.4 [24], we created addi onal features, which include:
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me-on-task How much me does a student need for a certain task?

me between tasks How much me has passed between two tasks?

current absence me How long has the student been absent from the virtual lab?

Other features, that are more general, can be grouped in different kinds of behavioral descrip ons:

basic ac vity Measuring basic ac vity such as the number of days a student has been ac ve or the
total number of sessions.

event counts Coun ng the number of mes an event or an event-iden fier combina on occurs. E.g.,
the number of mes a user added an electron to a bonding in the chemistry lab.

event values Mathema cal opera ons on event values, e.g., the sum of correctly answered ques-
ons or the mean value of points scored.

curve fi ng Curve fi ng can be applied to me series data. Parameters, such as a posi ve slope of
a inter-session me series, indicate an increasing mo va on in the virtual lab. More details on
this can be found in [14].

frequency Students’ ac vity can be transformed from a me series to a frequency domain. This
allows to es mate the strongest recurring frequency of a student.

social These features can count the number of connec ons within a social network of students16.
Other features indicate if a student is connected to other classmates that may be important
for the mutual learning progress.

4.2.2 Classifica on Algorithms

There is a variety of classifica on algorithms that can be used for the predic on of at-risk students.
GIO’s pla ormworks agnos c of par cular algorithms and chooses themost appropriate one for each
problem and dataset. We transferred this agnos c approach to the at-risk student predic on within
ENVSIAGE. Therefore, one the following algorithms is typically used within the system, depending on
the datasets and addi onal parameters:

• Logis c Regression

• Naive Bayes

• k-Nearest-Neighbors

• Decision Trees

• Random Forests

• Gradient Tree Boos ng

16One should note that these kinds of features require virtual labs that allow social interac ons.
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• Ar ficial Neural Networks

• Support Vector Machines

When tes ng different algorithms for the predic on of at-risk students, we relied on the implemen-
ta on of the algorithms in the scikit-learn17 Python library. For Ar ficial Neural Networks (ANNs), we
also used TensorFlow18. All ANNs ran on an Nvidia general purpose Graphics Processing Unit (GPU).

4.2.3 Choosing an Algorithm and Parameters

Every algorithm has strengths and weaknesses. On top of that, algorithms typically cannot be used
out of the box with default parameters. Therefore, we have to op mize the parameters first. This is
typically done with help of an automa c parameter op miza on.

There are different kinds of parameter op miza ons. The simplest one is a brute-force grid
search. A grid search finds the best configura on for an algorithm based on a given space of parame-
ters. In a nutshell, an algorithm has different parameters, e.g., a logis c regression can be configured
with an automa c normaliza on of the data, different op miza on algorithms, various thresholds,
and op ons. If onewants to validate if a parameter has impact on the result, one adds the parameter
to the search space of the grid search. Then, the algorithm is evaluated on every combina on of the
passed parameters, i.e., on every instance in the search space. Typically, the evalua on is done with
a cross valida on to get stable and reliable results. The cross valida on splits the training dataset into
k different folds. Each fold is a random subset of the data. Based on the folds, the data is par oned
into a training and test datasets. Typically, one fold is used for tes ng and the remaining folds form
the training dataset. Depending on the dataset and classifica on problem, different scores are used
for the valida on. Accuracy and f1-score, as described in Sec. 4.4, are typical examples.

A basic grid search is very me consuming because all possible combina ons of a given param-
eter space need to be tested. A smarter and faster way to approximate the op mal parameters is a
Bayesian op miza on, e.g., as described in [9]. Bayesian op miza on does not test every item in the
en re search space but instead samples configura ons from the space and tries to search the space
in an intelligent way. This avoids tes ng all configura ons of the search space and the approach tries
to avoid configura ons that are not promising. Naturally, this also introduces the risk of trapping into
a local op mum, i.e., not finding the best parameters available in the search space.

4.2.4 Fi ng the Model and Making Predic ons

Thewhole procedure of parameter op miza on is done to obtain awell performingpredic onmodel.
A er the best parameters have been found, the model is trained with the winning parameters. The
whole process is done in the “Model Learning and Parameter Op miza on” part of the infrastructure
(cf. box 4 in Fig. 5). A erwards, the model is available in the GIO infrastructure and can classify new
students (cf. box 5 in Fig. 5).

If one wants to know the probability of learners being at risk of not returning to a virtual lab,
GIO’s API can be queried for these learners. By default, these predic ons are done in a batch-wise
fashion. Every night, learners ac ve within a given me frame are taken into account. These learners

17http://scikit-learn.org
18https://www.tensorflow.org
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are then classified based on their behavior. The result is a probability for each learner of returning
to a virtual lab. Through the API, one can obtain a list of user iden fiers and their at-risk probability.
By predic ng the current likelihood of a student every day, we create an at-risk profile of students.
These profiles could support a teacher to respond if the probability increases over me for certain
students. Pla orms such as Moodle or Blackboard offer communica on modules, allowing to in-
teract with students directly. For example, if the at-risk probability increases, the teacher is alerted
and encouraged to support the student. GIO’s pla orm already offers similar capabili es for market-
ing purposes and is currently extending it to use cases within educa on. As discussed before, this
needs to respect more sensi ve privacy regula ons and restric ons. Addi onally, we have added
an demonstrator for historic data for the ENVISAGE project. One can upload historic raw data in the
format described in D2.1 [13] and get a first impression on what the model looks like. This is further
described in the case study of the chemistry lab (Sec. 4.5.1), and also part of the demonstrator for
the at-risk student use case (Sec. 6.1).

4.3 Student Performance Predic on

A er explaining the predic on of at-risk students in greater detail, we will now shi our a en on to
the predic on of students’ performance. Here. the objec ve is to predict a student’s performance
which is in most cases represented by a grade or a score. In a simplified se ng, we might only want
to predict if a student solves a quiz correctly. Similar to the at-risk student predic on, student per-
formance predic on needs historical data which describes past behavior of students and includes
a corresponding label for their performance, e.g., the reached score or grade of the students. Al-
though it is mainly used in research on higher educa on at the moment, as described in Sec. 4.1.1,
there are different use cases where student performance predic on is valuable. For example, it can
help to iden fy students that will pass or fail an exam, or drop out of school due to low scores or
grades. This effects not only the students’ future, but it also leads to financial losses and a nega ve
reputa on for schools, colleges, and universi es. Needless to say that this holds regardless whether
these ins tu ons are private or public. For example, the German educa on system is es mated to
lose every year about €2.2 billions due to university drop outs.19.

Within the ENVISAGE project, we focus on high school students. Therefore, we decided to predict
the students’membership in one of the four PISA 2012 proficiency classes. Typically, virtual labs track
scores for solving different problems. We can then map these scores from different tests and quizzes
to the PISA categories.

When looking at the simplified case of predic ng whether a student passes an exam, we can
reduce the problem to a binary classifica on problem akin to the predic on of students at-risk. As
we have described above, predic on of at-risk students is also know as churn predic on in other
industries. Similarly, the simplified performance predic on can be seen as a “conversion predic on”.
Typically, a conversion predic on classifies users in two groups. One group contains all users forwhich
a par cular conversion event has been observed. The second group contains only users without this
conversion event. Conversion predic on is o en used in (mobile) games to predict if a certain stage
in the game will be reached by a player or if a player will buy in-game items. Other examples occur
in e-commerce se ngs where the cancella on of subscrip ons can be predicted.

19https://his-he.de/meta/presse/detail/news/studienabbruch-staat-vergeudet-jaehrlich-22-
milliarden-euro.html
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In this deliverable, the predic on of students’ performance is exemplified in a third case study
below (Sec. 4.5.3). The case study is based on data from the 3D Wind Energy Lab and the data was
collected during a recent pilot test at EA. Here, the tracked raw data was directly used without the
preprocessing infrastructure in Fig. 5. To generate labels for the machine learning algorithm, the
score system of the 3DWind Energy Lab was aligned with the PISA 2012 proficiency classes. The case
study shows how these categories can be predicted successfully.

4.4 Quality Measures

predicted class
Yes No

Yes True Posi ve (TP) True Nega ve (TN)
actual class

No False Posi ve (FP) False Nega ve (FN)

Table 1: Confusion Matrix

To evaluate the predic ons and measure the quality of a model, we mainly use two metrics. The
presented quality measures in this sec on describe the quality of the algorithms from a sta s cal
perspec ve. It should be men oned that these metrics are not meant to be used by educators with-
out addi onal explana on. There are different measures that can be used to evaluate a model and
we will now explain accuracy and the f1-score. Depending on the dataset and algorithm, one has
to figure out what scoring method is be er suited. Addi onally, the output of the predic ons can
be represented with help of a confusion matrix. An example of such a confusion matrix is shown in
Tbl. 1. Accuracy is the ra o of correctly predicted observa ons and the total number of observa ons:

accuracy =
TP+ TN

TP+ FP+ FN+ TN
(2)

While this metric is quite intui ve, it should be used with cau on. If the data is well balanced, i.e., all
classes occur with similar frequency, accuracy gives a good idea about the performance. However,
in the case of unbalanced datasets, where in the extreme case 99% of the students do not finish the
course, a trivial algorithm can achieve an accuracy of 99% by always returning a nega ve predic on.
Therefore, accuracy is not meaningful in this example. In par cular, we would be interested in an
algorithm that can detect the 1% of students who finish the course and the metric should prefer
algorithms performing well on this task.

The f1-score is based on the precision and recallmetrics. Precision, TP/(TP +FP ), shows how
many students are correctly iden fied at risk. Recall, TP/(TP+FN), calculates howmany students
among all at-risk students were correctly iden fied as such. The f1-score is the harmonic mean of
precision and recall:

f1-score = 2 · recall · precision
recall+ precision

(3)

This score takes both, false posi ves and false nega ves, into account. The f1-score should be used
in par cular if the distribu on of labels in the dataset is unbalanced. For the predic ons of at-risk
students, the f1-score is typically used as the classes are o en not well balanced. In the case of the
chemistry lab, the data showed only a very small number of users who returned to the chemistry
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lab. Although the dataset in the churn predic on case study (Sec. 4.5.2) is more balanced, the data
providers and organizers of the associated challenge decided to use the f1-score as well. The metrics
discussed so far, were defined for binary classifica on tasks. However, the predic on of students’
performance results in more than two classes. For such predic ons, the accuracy and f1-score can
be extended easily to the mul -class se ng.

4.5 Case Studies

The following three case studies are based on three different datasets. First, the GoLab Organic
Molecule Covalent Bonding virtual lab is used. This lab was already described in D1.1 [32]. It was
ini ally developed to prepare learners for chemistry exams. This se ngs is a good environment for a
con nuous and repe ve usage of the lab. A recurring usage of the lab mo vates the applica on of
the at-risk student predic on. Ini ally, the data of theWind Energy Lab (cf. D1.4 [24]) was intended to
be used to forecast a student’s at-risk behavior as well. However, theWind Energy Lab is constructed
in such a way that it is played only once. From a pedagogical perspec ve, repea ng theWind Energy
Lab does not make as much sense as the chemistry lab. However, this does not imply that deep
analy cs or predic ons cannot be used in theWind Energy Lab in general. For the second case study,
we are using data from aMassive Mul player Online Roleplay Game (MMORPG), made available to
us in a churn predic on challenge at the Computa onal Intelligence in Games (CIG) conference in
2017.

While the first two case studies address the predic on of at-risk students, respec vely churn
predic on, the third case study addresses the student performance predic on. Here, the data of the
3DWind Energy Lab was usedwhich also highlights that the 3DWind Energy Lab is indeedwell suited
for deep analy cs. The case study shows how to predict a student’s affilia on in one of the four PISA
2012 proficiency classes.

As men oned in Sec. 3.2, there is a 2D and a 3D version of the Wind Energy Lab. Besides the
graphic design, there are two major differences between both versions. While the 2D version fo-
cuses only on configuring the environmental parameters to generate enough energy, the 3D version
has significantly more features. There are different landscapes and the user journey is much more
diversified. Addi onally, the learner gets a quiz at the end of a simula on. Due to those substan al
changes, the data tracking is more sophis cated as well which means a be er data basis for machine
learning algorithms. For classifying a student in one of the PISA categories, the data of the 3D lab
was used.

4.5.1 Chemistry Lab

The dataset for the chemistry lab contains 2,079 events from 107 unique users with 21 different types
of events. This is roughly the available data in December 2017. To be more precise, the students
were observed from May 31st, 2017, un l December 14th, 2017. In total, we had a count of 107
students which is a rather small amount of users for applying machine learning algorithms. Due
to this small user count, the case study qualifies as a feasibility study or prototype, which shows the
general capabili es of the at-risk student predic on on real educa on data. Over the en re mespan,
the students used the lab in 118 sessions. For a be er understanding of the dataset, the sta s cs
in Fig. 7 give a brief overview on the event distribu on. A deeper look at the distribu on of the
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Figure 7: Event distribu on in the chemistry lab dataset.

events shows that set.electron and add.bonding represent approximately 50% of all events. This
is due to the fact, that the chemistry lab is designed in such a way that both events are triggered
frequently by students in each itera on. To be more precise, these events are always triggered when
a student selects an electron and drops it to one of the bonding posi ons. As one can see in the
example in Fig. 8a, a correct solu on requires 8 electron selec ons and 8 posi oning events. When
a student now moves an electron to a wrong posi on as depicted in Fig. 8b, a rearrangement of the
electrons is necessary and even more events are triggered. Compared to the other tracked events,
the total number of events from these two types will always be much higher. Addi onally to this
event informa on, locale informa on about the country and language is available for the students
as well. We observed that the most popular origin of the students was the US, and the most popular
language was English accordingly. This is a surprising insight about the students itself because the
lab was not promoted in the US. We currently assume that a large number of bots, for example from
search engines, visited the lab frequently. With this data at hand, the learning rou ne for a model
predic ng at-risk students was started.

To learn a model, the students were observed for 7 days and the churn window had a mespan
of 28 days. With these parameters, we labeled 99 users as at-risk students, respec vely churners,
because they only used the lab within the first seven days and did not return in the following 28
days. On the other hand, 8 students were labeled as frequent users or students returning to the lab.
However, this ra o was not surprising due to the fact that the lab was not in permanent use or part
of the curriculum in the last months.

A er themodel for the chemistry lab was learned, insights and quality es mates were accessible.
As a quality measure, the f1-score was used, as the dataset is not well balanced (cf. Sec. 4.4). Looking
at the sta s cs above, only 7.5%of the students return to the lab a second me. Themodel achieves
an f1-score of 0.96 which is a very good result, as we will later see in comparison to the second case
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(a) Correct electron posi ons. (b) Rearrangement of electrons is necessary.

Figure 8: Electron selec on for water (H2O) in the chemistry lab.

study in Sec. 4.5.2. One of themost helpful insights from themodel is a list of themost important fea-
tures used for the predic on. Themachine learning algorithm determined the following five features
based on custom events as most important:

• remove.element

• task.finish

• remove.electron

• check.electrons

• start.lab

This list of features can support teachers for improvements of the lab design. For example, compared
to Fig. 7, where set.electrons was the most used event, this event does not appear in the list of
the most important events. This underlines the power of machine learning algorithms which are
capable of finding important events that do not solely rely on the highest frequency but instead
on the discrimina ve power. Similarly, the event remove.element only represents 2% of the total
events but the algorithm iden fied it as an important event in the case of predic ng at-risk students.
Such insights are easily accessible and can now be interpreted from a pedagogical point of view for
further measures to improve the lab. The results from this feasibility study show that the system is
capable of predic ng at-risk students. The next case study will addi onally show that the ENVISAGE
pla orm can also handle millions of events and scales to Big Data se ngs.

4.5.2 Blade & Soul

As pointed out in the state-of-the-art sec on, all machine learning approaches require a dataset
that allows to build features. For the ENVISAGE project, we were lacking a dataset from the virtual
labs containing thousands of students with millions of events. Due to this problem, we looked for a
dataset which has a high similarity to educa onal apps but is larger in size than the dataset from the
chemistry lab. One great solu on to the problem was par cipa ng in the game data mining com-
pe on as part of IEEE’s CIG 2017. NCSOFT, one the world’s largest game studios for MMORPGs,
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provided a dataset with telemetric user data from their highly successful Blade & Soul (BnS). The
training dataset had about 175million events from 4,000 players. There were two test datasets con-
taining an addi onal 3,000 players each. While the players in the training data were observed over
40 days, the players in the test datasets had an observa on me of 56 days. While the chemistry lab
in Sec. 4.5.1 had only 21 different events, we were able to extract about 80 different event types and
75 event proper es from the BnS data. Tbl. 2 summarizes the BnS data.

Dataset Time Period Weeks Number of Gamers
Training 2016/07/27 - 2016/09/21 6 4,000
Test Set 1 2016/07/27 - 2016/09/21 8 3,000
Test Set 2 2016/12/14 - 2017/02/08 8 3,000

Table 2: Blade & Soul trainings and test data.

In contrast to the virtual lab data, the first stepwas analyzing the data and transferring it to the EN-
VISAGE format. The data provided by NCSOFT differs substan ally form the virtual lab data which is
directly tracked through the GTM tracking integra on. The BnS data also contains more event types
and proper es which allowed us to build new kinds of features. For example, social interac ons
within the game were given in the dataset. While recency and frequency ma er a lot in predic ng
at-risk students or churn in general, social interac ons were a new kind of informa on which we did
not have in the virtual labs. We found it par cularly interes ng to engineer social features because
this also connects to the social presence as described in [11], which is also used byMoodle for their
at-risk student predic on. Similar to the pedagogical perspec ve in virtual labs, certain game char-
acteris cs have to be taken into account when designing features for games. For that reason, the
feature engineering process was done in an itera ve fashion. This includes discussions about fea-
tures and the game concept, and checking the importance of new features. Therefore, we tried to
mainly make use of algorithms that provide informa on about feature importance. Nevertheless,
we did not limit ourselves to such algorithms and also tested ANNs. One should note that many of
the newly built features are also well suited for educa onal se ngs. Similar to the chemistry lab,
the features described in Sec. 4.2.1 were also used for the churn predic on of the BnS players.

The CIG challenge was a great testbed to validate if the churn predic on or at-risk student pre-
dic on can be used on large datasets and to show that the algorithms are capable of producing
meaningful output in an addi onal se ng. In the end, the GIO pla orm was ranked among the top
five results in the compe on with 13 results submi ed in total. As an addi onal outcome, the par-
cipants were asked to contribute to a joint paper about the results and used methods within the

CIG challenge. This paper is currently under submission and we refer to [19] for more details. GIO,
represen ng the ENVISAGE consor um, par cipated in this publica on and described its work on
churn predic on.

The results provided further insights that will help to improve future work on the at-risk student
predic on. One observa on was that the algorithm did not heavily weight features based on the
social network within BnS. Regarding the social presence, one could assume that social features
should have a stronger impact and are very important from the pedagogical point of view. The social
graph that was created for BnS had about 32,000 players. However, we only had informa on about
connec ons within the network for 4,000 players. This data leads to an incomplete and very sparse
graph which is rather uncommon. For further work on social features, a complete social network
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Figure 9: Feature importance for churner in Blade & Soul.

would be necessary. We can transfer this observa on to the educa onal se ng as an important
insight. If one wants to take collabora on among students into account, the complete social network
needs to be tracked within the virtual lab.

A er learning a model based on the data described above, one can again analyze the importance
of different features. Fig. 9 gives the rela ve importance of the features used in the BnS case study
grouped by different types. Here, “Frequency” represents features that count events. “Recency”-
features measure the me since a par cular event has occurred or the me between two events.
“Amount” groups features which depend on values a ached to events. For example, the amount of
virtual money spent. Lastly, features in the “Tendency” group indicate an increasing or decreasing
level of engagement based on curve fi ng. As described above, the BnS dataset provides a rich set
of events which allowed us to create a large amount of features. Many of these features can also be
used by the predic on of at-risk students. For example, the social features that represent interac ons
with other players or the frequency-domain feature that represents regular recurring usage.

While the f1-score in the chemistry lab case study was very high (0.96), we were only able to
reach an f1-score of 0.58 in the BnS case study. However, one should also not that the winner of the
CIG data mining compe on reached an f1-score of 0.62. This highlights that the problem is quite
difficult and huge improvements in the f1-score cannot be achieved easily but instead require a lot
of effort on feature engineering and algorithmic design.

Besides the differences in the two datasets, i.e., chemistry lab and BnS, we were able to use a
large intersec on of features for both case studies and run the data through the same pipeline as
depicted in Fig. 5. By doing so, we were able to validate the performance and capabili es of the
infrastructure, resul ng in predic ons for the chemistry lab and the BnS dataset. On the one hand,
we could show that we are able to learn an at-risk student model and on the other hand, we are
able to solve a very similar task at a much larger scale. This underlines not only that the pipeline
for predic ng at-risk students is fully func onal but it also shows with respect to the results of the
CIG challenge that the work of the ENVISAGE project is highly compe ve. The work on research
and development in the past months shows to be compa ble with other research domains and is
applicable in interdisciplinary se ngs. As described at the beginning of the sec on on supervised
learning, the two case studies also highlight the similari es between educa onal data from virtual
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Figure 10: Event distribu on of the Wind Energy Lab dataset.

labs and behavioral data from games.

4.5.3 3D Wind Energy Lab

During the pilot execu on at EA in January 2018, 78 students used the 3D version of theWind Energy
Lab. The infrastructure was able to track 16,277 events in total over on three days. This included 21
unique event types. Addi onally, 918,409 events with game.state informa on were tracked. For a
be er understanding of the dataset, Fig. 10 gives an overview about the event distribu on. Similar
to Fig. 7 in Sec. 4.5.1, Fig. 10 shows the rela ve usage of each event. In the 3D Wind Energy Lab,
the event enable.turbine is used most frequently with roughly 23%. Similar to the observa ons in
the chemistry lab, this indicates that the lab concentrates on a par cular aspect and triggering the
associated event is central to the usage of the en re lab.

The applica on of deep analy cs at the 3D Wind Energy Lab20 comes in the form of supervised
learning and in par cular, ANNs. ANNs are chosen because of theirwide adop on inmodernmachine
learning applica ons, their supreme performance in supervised learning tasks and their capacity to
approximate any given func on with high accuracy (a qualita ve feature widely known as universal
approxima on).

Given the different nature and increased complexity of the 3D version of the Wind Energy Lab
and the overall aim of educators (D1.1 [32]) to predict the travel path (or learn ability performance)
of learners, we devised the following supervised learning approach. The ANN we employ considers
the following input vector:

• The game level where the learning exercise takes place, split by map/area (e.g., mountains)
and map pointer (sub-area within the map). Each of these variables (map/area and subarea)

20http://160.40.51.48/games/energy
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Figure 11: An example histogram of scores at the 3D Wind Energy Lab.

are iden fied by an integer ID which is transformed for the input vector as one-hot encoding.
The subvector of inputs for the game level is thus, for example: 0,0,0,1,0,0,0,0,0,0,0,1,0,0 (the
first five digits are for themap, which has an ID of 2, and the last 9 digits are for themap pointer,
which has an ID of 3).

• The power, cost, and area coverage of the chosen turbine to be used in this game level and for
the purposes of this exercise. These 3 values are normalized between 0 and 1, via min-max
normaliza on considering all currently authored turbine values in the 3D Wind Energy Lab.
The subvector of inputs for the chosen turbine is thus, for example: 0.417, 0.974, 0.75.

Based on the above input the ANN outputs (a empts to predict) the 4 PISA categories of student
performance based on the score metric as described in D2.4 [12]. As a reminder, the score repre-
sents a mastery index metric, which is ad-hoc designed by expert educators and designers of the
Wind Energy Lab. The score metric is based on a combina on of features on the simula on itself and
a mul ple-choice answer post-simula on. The student’s score may vary between 1 (lowest possible
performance) and 10 (highest possible performance). Fig. 11 illustrates an example of a score dis-
tribu on (illustrated as a histogram of scores) at the 3D Wind Energy Lab. The 4 PISA categories are
derived as follows and define the 4 outputs the ANN predicts:

• III: Reflec ve/communica ve — Score: 8, 9 and 10

• II: Advanced — Score: 5, 6, 7

• I: Beginner — Score: 2, 3, 4

• <I: No problem solver — Score: 0, 1

The ANN may use a varying number of architectures depending on the data size available. The
most promising results have been achieved with architectures of one (or none) hidden layer consist-
ing of few neurons (see Fig. 12). All neurons of the ANNs in the final demonstrator of ENVISAGE em-
ploy a logis c func on. The ANNs are trained on the dataset available (as described earlier) through
standard backpropaga on.

Page 32



Figure 12: TheANNapproach adopted for predic ng the level of the learner’s competence (PISA score
distribu on) at the 3DWind Energy Lab. The ANNmaps in-game features to the score distribu on (4
score classes according to the PISA 2012 classifica on).

The cluster membership distribu on as it is obtained from the ANN (<I to III) distribu on is re-
ported back through the analy cs service to the visualiza on front-end. An educator that completes
a new virtual lab using the 3D authoring tool is presented with this visual analy cs informa on at
the end of her design. The pie chart shown below in Fig 13 displays the predicted PISA classifica on
distribu on (ANN output) given the choices the teacher made during the authoring process (ANN
input).

The implementa ons used to experimentally realize the supervisedmodels described in this doc-
ument can be found at the following URL:

https://github.com/Envisage-H2020/Analytics-Server
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Figure 13: Similarly to the 2D Wind Energy Lab deep analy cs solu on, the four PISA clusters (four
ANN outputs) are depicted as a pie chart in the visual analy cs front end of the 3D Wind Energy Lab
of the authoring tool. For more details about the visual analy cs service please refer to D2.4 [12].
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5 Adapta on of Learning Material

The previous sec on described how supervised learning can be used to iden fy at-risk students.
However, iden fying such students is one thing. Recovering these students and keeping them en-
gaged is far more difficult. Students leaving a virtual labmay have various reasons. One reasonmight
be that either too li le or too much is demanded from the students. In this case, we can try to adapt
the content in such a way that it be er fits the needs of the students.

5.1 State-of-the-Art

When looking at state-of-the-art approaches, we differen ate here again between academic ap-
proaches and companies applying similar ideas in the industry. Research has been inves ga ng the
adapta on of learningmaterial or personalized content in general a lot earlier before companies have
started to integrate such approaches into their products. As in the previous examples and within the
en re ENVISAGE project, it makes sense to first have a look at the development in games and then
compare it to the state-of-the-art in educa on.

5.1.1 Academic Research

Although there exist different angles for content adapta on in games, oneof the commonapproaches
is to adapt the difficulty in games. The seminal work by Hunicke and Chapman from 2004 [17] de-
scribes the Hamlet system for adjus ng the difficulty dynamically in Valve’s Half Life. Hamlet ana-
lyzes player behavior and adjusts the games accordingly to control the game difficulty. There are
also more recent papers such as the work by Xue et al. from 2017 [36]. Xue et al. try to op mize a
player’s engagement throughout the en re game by using probabilis c graphs in level-based games
by Electronic Arts. While the work summarized so far, focuses on adjus ng games in general, there is
also work on adjus ng opponents in games. For example, Olana Missura’s disserta on [26] presents
an universal framework for games where players have interac ons with opponents. Here, the skill
level of an opponent can be adapted to match a player’s skill.

When it comes to EDM, different techniques have been employed to personalize learning. For
example, collabora ve filtering [8] has been used to to suggest learning material. Other approaches
go even one step further and try to design en re courses or study plans in a data-driven way [1].

5.1.2 Industrial Approaches

In gaming, companies such as deltaDNA offer consul ng on game balancing21. In many cases, this
is more oriented towards mone za on than players’ performance or even skill improvement. For
example, a game developer may not be interested in causing a player to solve all levels as quickly as
possible because this player will then quickly move on to a new game — possibly from a different
developer or game studio.

When looking at the educa onal sector, this topic is o en referred to as Adap ve Learning and
different aspects are covered by this term. While changing the content is also considered to be
adap ve learning, the implementa on of different learning theories are also included. For example,

21h ps://deltadna.com/consultancy/
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changing the repe ve behavior of a flash card system. Companies such as WiseLab offer systems
that allow to create content based on ques ons and answers. This learning material is then rolled
out to the learners in different forms (e.g., mul ple choice ques ons) and on different pla orms
(smartphone, tablet, etc.). In order to op mize the learning progress, the order of the ques ons are
adapted. D2L22, formerly Desire2Learn, is an example of a company where the content for students
can be adapted. They provide an LMSwhich offers rule-based content adapta on. One of their intro-
ductory videos23 describes well how triggers can be set to personalize the learning experience. For
example, when the system detects that students struggle to complete a test, suppor ng content can
be provided only to those students. Other LMSs’ like SABA24, and Know-How!25 also offer support
to define learning pathways based on thresholds. Another example is Teach to One by New Class-
rooms26 which promises personalized learning for math. Teach to One partners with schools directly
and does not only focus on digital learning material but also replaces the core curriculum of a class
by crea ng individual content for each student.

Other companies go beyond rule-based systems and employ machine learning for educa onal
scenarios. For example, TrueShelf27 offers an adap ve learning pla orm that lets students learn
mathema cal concepts by helping them to solve math problems and real-world puzzles that get pro-
gressively harder as their skills develop. Their AI-powered pla orm iden fies students’ strengths and
weaknesses, and personalizes content accordingly. Adaptemy28 is another example of a company us-
ing an algorithmic approach to personalize the learning experience. Adaptemy’s pla orm does not
only provide a recommenda on engine that takes the type of content into account but also tries to
support learners by es ma ng their proficiency level and personalizing content accordingly.

5.2 Dynamic Difficulty Adjustment

As we have discussed already, students have different behaviors and show varying performance on
learnings tasks. Therefore, we should also adapt the learning material to their needs. We should
avoid to demand too much from a student but we should also pay a en on to the learner not being
bored. In general, we should beginwith finding the best approach to teach content to an en re group
or class. A erwards, we can try to find a good pace for smaller subgroups of students, e.g. the high
performing students. Ul mately, we are looking for a system that adapts the content for each student
individually. Before we can adapt the content, we need to assess the performance of a student on
the learning task, exercise, or challenge. At the same me, we also need to know the difficulty of a
given task, in order to adapt the course material accordingly. We describe different approaches in
the next sec on.
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Figure 14: Mul ple choice ques on in the 3D Wind Energy Lab as part of the grading.

5.2.1 Assessing Performance and Measuring Difficulty

Assessing the performance of a student is not always obvious and can be done in different ways.
Deliverable D1.1 [32] already described how me-on-task is an important indicator in learning an-
aly cs. It was also discussed that me-on-task can be related to a student’s learning performance
or achievements. We have seen this connec on in Sec. 3 too when we clustered students using
archetypal analysis. In some cases, me-on-task can measure the difficulty of an exercise as well.
For example, if students typically do not require much me for a task, one can consider it to be
easier. However, this indicator does not always measure the difficulty as students may also give the
wrong answer a er only li le me because they did not give the exercise enough thought. If we have
exercises where we ask students for an answer, we would rather judge the difficulty of an exercise
by the total number of correct answers for each exercise, or the average grade of that exercise. For
example in the 3D Wind Energy Lab, students have to answers ques ons which are part of a scoring
(see Fig. 14 for an example). The results are used to es mate the student’s PISA proficiency level.

If we cannot easily judge the quality of an answer or the learning task, we can also consider to
explicitly ask the students to rate the previous task. This could be a se ng where we would need
a teacher to rate every answer a erwards. For example would be, when a solu on requires a free
text. Here, it is not possible to immediately assess the quality of a solu on. In larger se ngs like

22https://www.d2l.com
23https://www.d2l.com/resources/videos/personalize-learning-experience-release-conditions-

intelligent-agents/
24https://www.saba.com
25https://en.knowhow.de/
26https://www.newclassrooms.org
27https://trueshelf.com/
28https://www.adaptemy.com
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Figure 15: Infrastructure for content adapta on and dynamic difficulty adjustment.

MOOCs, it may even be completely impossible to rate each answer in an acceptable me frame.
A er the comple on of an exercise, we can ask the students to rate the previous exercise as “easy”,
“medium”, or “difficult”. Of course, other ra ng schemes are also possible. Fig. 15 shows the en re
process how the ENVISAGE project realizes content adapta on within the GIO infrastructure. The
figure also highlights how the learner’s feedback is acquired and processed (Fig. 15 (1)).

Having either a grade or explicit feedback from the learner, we can correlate this feedback with
metrics such as me-on-task to es mate the perceived level of difficulty for students based on tele-
metric behavior. In some cases, the difficulty does not correlate with a single behavior but instead
several features have to be taken into account. Having feedback and behavioral data at hand, we can
use this data to build a machine learning model that takes as input the tracked data and the grading
or perceived difficulty of a student as labels (Fig. 15 (2)). Based on the behavioral data, the learned
model predicts how difficult a new task is for a student or predicts the es mated performance of a
student on a new task in advance. The case study on the 3D Wind Energy Lab in Sec. 4.5.3 also gave
an example how a machine learning model can be trained to predict students’ performance. This
approach has several advantages:

• By doing so, we can learn general behavior that correlates with more or less difficult tasks and
exercises.

• We can add new tasks and exercises in the future, and use our model to get an idea of the
difficulty of each new one.

• We get rid of the requirement to ask the learner for explicit feedback. These request for feed-
back may annoy the learner and cost me.

Depending on the amount of users, we do not even have to ask each learner to rate each tasks.
Instead, we can generalize from a smaller number of students and we do not have to bother each
learner. Again, this is in par cular interes ng when looking at MOOCs with thousands of learners.
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5.2.2 Designing Learning Strategies

A er measuring the difficulty of an exercise and building a model to judge different exercises auto-
ma cally, the third step is to design different learning strategies (Fig. 15 (4)). Here, a learning strategy
can have a variety of different forms. For example, in the case of theWind Energy Lab, a strategymay
be an ini al se ng of the environment. Certain parameter configura ons make the problem easier
for the students because they have to do fewer changes in order to generate the proper amount of
energy or income. In the chemistry labs, the strategiesmay look different. For example, theMolecule
Construc on Lab29 asks students to buildmolecules. In its original form, the student picks amolecule
from a given list, solves the current task, and proceeds with the next molecule. One can also think of
a version of this lab where the students cannot pick the molecules themselves but instead the order
is given by the lab, i.e., by the teacher. Here, different strategies can order the molecules differently.
For example, from easy to hard, or vice versa. We have implemented this version as a use case in
Sec. 5.3.1.

5.2.3 Automated Strategy Design: Gene c Algorithms

The examples of the previous sec on require expert knowledge from the teacher to define different
strategies. In some cases, the space of all possible strategies is way too large, to manually define and
test all strategies. In such se ngs, machine learning algorithms can be used to define new strategies
automa cally. In par cular, we have started to look into Gene c Algorithms to create new strategies.

Gene c algorithms allow to automa cally construct new strategies based on exis ng ones. In-
spired by the process of natural selec on, gene c algorithms find solu ons to search problems in
an itera ve fashion. Typically, gene c algorithms start by genera ng a few random solu ons. In the
current se ng, we prefer to have an educator genera ng ini al seed solu ons because the educa-
tor typically has a good intui on how a “good” strategy may look like. In each itera on, the gene c
algorithms pick a few exis ng strategies from the pool of all available solu ons to construct a new
genera on. Strategies that already perform well, are more likely to be selected to construct the next
genera on. The performance of a strategy is evaluated based on a fitness-func on. In our se ng, the
fitness-func on can be the average performance achieved by the students who learned according to
a strategy. The construc on of a new genera on is based on simple permuta ons and modifica ons
of the current genera on. A erwards, the new genera on is then evaluated again based on the
fitness-func on. This process con nues un l a quality threshold or a maximum number of itera ons
has been reached.

However, in the case of educa onal se ngs, this approach comeswith addi onal constraints and
challenges. Here, we have to be very careful with randommodifica ons. The ethical requirements do
not allow us to test strategies completely at random because students may suffer from bad random
strategies. For example, think of a strategy that chooses all parameters to be a the most difficult
se ng. To a gene c algorithm this may look like a total valid strategy but a teacher would never
pick it manually. Although the results would quickly indicate that this strategy is not desirable, our
ethical obliga ons do not allow us to test such a strategy. Furthermore, the fitness-func on cannot
be evaluated easily in this se ng, as we first have to find students to evaluate the new genera on

29http://www.envisage-h2020.eu/games/chemistry/lab_molecule_ionic_covelant_bonding/
Molecule_IonicCovelantBonding.html
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on. Addi onally, we have to make sure that the difference in quality is significant and not just a
probabilis c ar fact. For the la er issue, we describe appropriate tests in the next sec on.

While gene c algorithms can easily generate hundreds or thousands of strategies, we also need a
sufficient amount of students to validate the quality of each strategy. For that reason, school se ngs
may be less adequate for this approach but MOOCs show a lot poten al for this automated process.
The next sec on will describe in detail how strategies can be compared and tested.

5.2.4 A/B and Mul variate Tes ng for Learning Strategies

If we have mul ple strategies at hand, we want to compare those strategies. As we have described
above, the performance of a single strategy is typically the average score over a group of students.
For that reason, we have to assert that the difference in performance of two strategies is sta s cally
significant and not only due to some extreme outliers. E.g., a few students achieving extremely good
results by chea ng. If we have two strategies at hand, we can compare them via A/B-Tes ng [20].
Here, it does not ma er how a strategy was constructed by gene c algorithms or manually by a
human. A/B-tes ng allows us to pick the more promising alterna ve of two strategies.

Running an A/B tes ng experiment on two strategies amounts to a sta s cal significance test.
Typically, we assume a significance level of 95%. This means that one can be 95% confident that the
winning strategy is really superior. Nevertheless, there is s ll a 5% chance that the result is only due
to a random chance.

Depending on the nature of our experiment, different tests needs to be used. For example, when
the performance is measured by the number of students that pass a test, we have a binomial dis-
tribu on and should be using a Chi-square test. In other cases, where the performance indicator
is normally distributed, a t-test is what we are looking for. The performance data may be normally
distributed in the case of mings for a par cular task. However, in a proper se ng, we first need
to validate the distribu on of the data. In other cases, for example when we count the number of
correct answers, the data is strictly speaking not normally distributed butmay be Poisson distributed.
Nevertheless, it is also known that the normal distribu on is a limit of the Poisson distribu on for
large mean values. S ll, other tests such as the Wilcoxon-Mann-Whitney test are more suitable in
such cases.

We o en havemore than two strategies that we want to compare. Themost obvious thing to do,
is performing pairwise tests. However, this approach will increase the likelihood of false posi ves. As
described above, there is always a 5% chance of the winning strategy being inferior when assuming
a significance level of 95%. Now, doing several pairwise tests increases this chance. For that reason,
there exist other approaches to compare mul ple outcomes such as Analysis of Variance (ANOVA)
F-tests.

In general, A/B tes ng comes with some addi onal disadvantages. For example, we need to
specify the number of students in advance who will have to learn following the different strategies.
This may have the undesirable effect that the inferior strategy is used on many students who suffer
from lower quality teaching. For that reason, wewill explainMul -Armed Bandits in the next sec on,
which avoid this disadvantage.

Page 40



5.2.5 Mul -Armed Bandits for Op miza on

Instead of using pairwise tests or othermul variate tes ng frameworks,Mul -Armed Bandits (MABs)
also allow us to compare several strategies at the same me and also provide a mechanism to iter-
a vely pick the best performing strategy among all available ones. MABs are inspired by gamble
machines in casinos, i.e., the arms of the bandits. This se ng assumes that there are mul ple slot
machines in a row with random rewards. The player has to decide, which machine to play in order
to maximize the reward.

We can now view each learning strategy as a “one-armed bandit” and the reward is the per-
formance of a student. We want to find the strategy that maximizes the performance for as many
students as possible. If the reward of each strategy was known, the task was trivial. Without this
knowledge, we have to try different strategies and track the rewards. A very simple approach would
be to choose the strategy with the current best expected reward. However, this yields in the “ex-
ploita on vs explora on” dilemma. Some strategies that we have not tested yet, may yield even
be er results, or some strategies may just look bad a er just a few ini al tries due to random ef-
fects.

The goal of a bandit algorithm is now to find an approach that plays the op mal strategy exponen-
ally more o en than any other strategy. One instance of an algorithm that solves the mul -armed

bandit problem, is the Upper Confidence Bound (UCB) algorithm [3]. We will not give full technical
details here, however, the algorithm calculates a score for each strategy that trades off exploita on
and explora on in each itera on. Depending on this score, the next strategy is picked. Another
popular alterna ve to UCB is Thompson sampling [7]. Thompson sampling achieves state-of-the-art
results while being vary easy to implement.

In our se ng, we do not calculate the score for each student, i.e., in every single itera on, but
change the distribu on over all strategies frequently. I.e., we begin with a distribu on where all
strategies are distributed uniformly and then adapt this distribu on as we gain more insights on
which strategies perform well. By constantly changing the distribu on, we avoid the problem from
A/B tes ng where we have to determine a fixed number of trials per strategy in advance. Therefore,
there will be a lot fewer students that receive a subop mal strategy in many cases.

5.2.6 Personaliza on of Strategies

The MAB approach to find an op mal strategy has one disadvantage when talking about personal-
iza on of learning material and virtual labs: it tries to find an op mal strategy across all students,
i.e., it does not find strategies for different groups of students. However, it is very likely that not all
strategies are equally well suited for all students. For example, some students may require a slower
pace at the beginning than others.

For that reason, one future extension of this approach is to segment students into different groups
and to find op mal strategies for the different groups. One grouping of the students could follow the
PISA levels of proficiency. This approach has also been propose in D1.4 [24], Sec. 2.1.3.

Another approach could use the unsupervised methods presented in D3.1 [16], Sec 5.1, where
students were automa cally clustered into groups based on their behavior. Other approaches could
first use a predic on of at-risk behavior and group the students depending on their at-risk likelihood.
However, here one has to be careful. The classifier could also detect well performing students as
poten al churners, as they have already learned successfully and are in danger of leaving as the
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demand is too li le for them. For that reason, one has to carefully cra the adapta on of the content.
Eventually the vision is to have segments of size n = 1, i.e., every student gets an individual

learning strategy. Taking this even one step further, we can use Reinforcement Learning to learn a
model of an agent represen ng a teacher that dynamically adapts the content for each student on a
finer level.

5.2.7 Closing the Loop: Reinforcement Learning

Before describing how Reinforcement Learning can be used to learn a model of a teacher, let us
denote that the mul -armed bandit problem can be seen as one of the most simple reinforcement
learning problems or a precursor of reinforcement learning. A er each pull of an arm, the reinforce-
ment learning algorithm tries to find the op mal next ac on that maximizes the rewards. I.e., pulling
the same arm again or a different one. In the context of reinforcement learning, one refers to a pol-
icy. By using a method called policy gradients, a policy for picking ac ons is learned. Currently, it is
very popular to use ANNs and Deep Learning within the policy gradients approach.

An interes ng possibility of reinforcement learning is to learn amodel, or an agent, that simulates
a teacher. Previously, we defined en re strategies for a virtual lab in advance. For example, in the
case of the chemistry lab, we defined all ac ons in advance. E.g., in one strategy molecule A would
always follow molecule B and in another strategy this would possibly happen vice versa. However,
personalizing the en re learning experience would not define the next molecule in advance. Instead,
the student would solve one challenge and the teacher would then pick the next one matching the
current level of proficiency of the student. I.e., an ac on is the change in course or leaning material,
or adjustments to the environment of a virtual lab. For the chemistry lab, this would amount to learn-
ing a policy that picks the next molecule based on the previous molecules and the behavior of the
student. Here, the reward is the behavior or performance of the student. In deliverable D1.3 [33],
the ideas and advantages of ac ve learning are further mo vated, in par cular from a pedagogical
point of view. Reinforcement learning can be used as a technology to improve and advance the ap-
proaches to ac ve learning. Lastly, one should note that this se ng dis nguishes from supervised
learning as described above, as we do not know in advance how the next challenge affects the learn-
ing behavior of the student. Instead, the student has to solve upcoming challenges and based on the
performance, we learn if this was a good design of learning and course material.

This approach has not been implemented yet and is le for futurework. The approach also comes
with several challenges. We need a large set of students and evalua ons so that we can learn a reli-
able model. The feedback from the students does not necessarily come immediately. For example,
we may design a virtual lab with several sub-tasks. However, the students’ performance is only eval-
uated once at the end of the lab. Such a se ng, for example, is present in the 3D Wind Energy
Lab. Addi onally, this approach demands much higher computa onal power from the infrastruc-
ture. Whenever the student is evaluated, the model needs to make the next training itera on and
has to update its model. Similar to the MAB approach, one can also collect evalua ons in batches,
which however then only approximates the op mal training procedure.
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Figure 16: The original chemistry lab containing the default dropdown.

5.3 Case Studies

We will now present two different case studies that exemplify the usage of dynamic content adap-
ta on. We will begin by presen ng the integra on of content adapta on in a chemistry lab. This is
followed by a case study produced in coopera on with one of GIO’s customers who operates a highly
successful mobile quiz game.

5.3.1 Chemistry Lab

One use case for difficulty adjustment or content adapta on is the Organic Molecule Covalent Bond-
ing virtual lab. As shown in Fig. 16, in its current form, the student can pick a molecule from a
dropdown. A er this selec on, the student has to answer different ques ons with respect to this
molecule and solve associated tasks. A er all tasks have been solved, the student can pick the next
molecule. More informa on about the 2D Chemistry Labs can be found in deliverable D1.1 [32],
Sec. 6 and the lab is s ll available online30.

We have now modified the lab in such a way that the order in which to solve molecules is deter-
mined by the teacher31. The source code also be found in ENVISAGE’s GitHub-repository32. Each of

30http://www.envisage-h2020.eu/games/chemistry/lab_molecule_ionic_covelant_bonding/
Molecule_IonicCovelantBonding.html

31https://envisage.goedle.io/dda/examples/chemlab/Molecule_IonicCovelantBonding.html
32https://github.com/Envisage-H2020/lab_molecule_ionic_covelant_bonding/tree/gio/content_
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Figure 17: The new chemistry lab where a molecule is picked based on a strategy obtained from the
ENVISAGE API.

such orderings is what we considered a learning strategy in the descrip on of the approach in the
text above. The teacher now defines different strategies in the authoring tool and once a student
starts the lab, a random strategy is assigned by querying the ENVISAGE API. By doing so, teachers
can test if students stay longer engaged if easy molecules are followed by difficult ones. Or, if a good
ordering should containmore or fewer difficult molecules because an orderingmay contain the same
molecules more than once. Accordingly, the adapted chemistry lab looks as depicted in Fig. 17.

This implementa on has only been made available shortly before the submission of the deliver-
able. For that reason, we do not have enough data available to measure the impact of a possible
adapta on and we cannot say yet which strategy works best. However, we are aiming at integrat-
ing this content adapta on into the next pilot study, in order to obtain more behavioral data from
students and feedback from teachers. While the dynamic content adapta on is currently only inte-
grated in the 2D version of the lab, we are also working on integra ng the same mechanism into the
3D version of the chemistry lab, as well as the Wind Energy Lab.

Right now, the student will always receive a new strategy when the virtual lab is loaded. How-
ever, in the future one could also consider storing the current strategy as long as not all molecules
of a strategy have been solved. In that case, we would also require a skip bu on, so that too diffi-
cult molecules can be skipped and students do not leave due to insurmountable obstacles. Tracking
the usage of the skip bu on would also be an interes ng behavioral datapoint. Its analysis could

adaptation/

Page 44



Figure 18: Correla on between me to solve a level and the player feedback regarding the difficulty.

addi onally support the design of new strategies. If we proceed with this approach, we can also
implement more sophis cated approaches to assign a follow-up strategy. E.g., if students perform
well, they will receive a more difficult strategy a erwards.

A er a sufficient number of students have used the different strategies, we can start to evaluate
the different strategies based on various performance indicators. For example, which strategy lead
tomore correctly solvedmolecules? Which strategy had students engaged for the longest amount of
me? Similar to the case study for at-risk student predic on, the implementa on for the chemistry

lab is at a prototype stage and there was only limited data available as of February 2018. There-
fore, we now provide another case study in the gaming sector where the same system was used to
dynamically adapt the difficulty of a mobile quiz app.

5.3.2 Mobile quiz Game

One of GIO’s customers runs a successfulmobile quiz game. This game is divided in hundreds of levels
andwith the approach described in Sec. 5.2, we helped the quiz game to find an improved ordering of
their content. Opposed to educa onal apps, their KPIs may be different but the technical approach
remains very similar. The results presented here, were first published on GIO’s blog in November
201733.

From the surface it was not obvious which levels in the quiz game were more or less difficult, as
players could skip levels by using jokers. Therefore, we needed to measure the perceived level of
difficulty by the players, before we could analyze the rela onship between the customer’s KPIs and
level difficulty. For that purpose, GIO’s infrastructure supports the tracking of player feedback. A er
the comple on of a level, the app simply asked the player to score the previous level. In a simple
se ng, one can just ask the player to rate the level as “easy”, “medium”, or “difficult”. This data is
then used to calculate a score for each level.

However, one does not want to ask every single player to rate every single challenge as this will

33http://blog.goedle.io/2017/11/29/increase-ad-revenue-by-74-with-difficulty-adjustment/
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Figure 19: An example strategy that increases and decreases the difficulty in a smooth manner to
diversify the user experience.

annoy the user and possibly lead to churn. For that reason, we analyzed the data in detail and found
out that the player feedback correlated very well with the me it took to solve a level. Such an
observa on is not rare and can be found in educa onal scenarios as well. For example, we have
seen in Sec. 3.2 as well that me-on-task is a good indicator of performance and learnability. Fig. 18
shows data frommore than 2,000 different levels. In total, 750,000 level comple ons were taken into
account from roughly 60,000 players.

Once we have a func on to es mate the difficulty for all levels which only depends on behavioral
user data, such as me-on-task, we can get a be er understanding of how the user journey looks like
in terms of the level difficulty. We can now test different strategies and measure their impact on the
KPIs or use Mul -Armed Bandits to find the best strategy directly. The result of each test also gives
new ideas on designing addi onal strategies. One example of a strategy could be the one depicted
in Fig. 19. The strategy in Fig. 19 was designed in such a way that the level difficulty increases with
every level for a certain number of levels before it then decreases again for the same number of
levels. Users who want to be challenged right away might find such a strategy more appealing than
the ini al one. We can test dozens, hundreds, or even thousands of such strategies depending on
the number of players available.

In (mobile) games, revenue is typically themost important KPI. By tes ng various different strate-
gies, we were able to improve ad revenue for the mobile gamemen oned above by 50% a er 7 days
and 74% a er 14 days compared to the ini al baseline. One should men on that this was all possi-
ble by only opera ng on the macro level and we have not started to group users into segments yet.
As we have seen, measuring and analyzing the difficulty level has several benefits and applica ons
within educa on sector and beyond. It helps to op mize the reten on or mone za on in mobile
games but can also be used to op mize other KPIs depending on the nature of the app or students’
performance in virtual labs.
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6 Demo

We will now describe two demonstrators that include the predic on of at-risk students and the con-
tent adapta on from the sec ons above. We will begin with the predic on of at-risk students and
then describe how the content adapta on is managed from within the authoring tool. Most of the
func onali es shown below are accessible through the authoring tool at:

http://160.40.50.238/envisage/wpunity-main/

To login, a test account has been created with the username “author” and the password “review-
erenvisag”.

6.1 Predic on of At-Risk Students

To demonstrate the training of a model for the predic on of at-risk students, we have prepared a
web-service where raw tracking data can be uploaded. This data is then analyzed and preprocessed
to be used for the model learning. If the target app already uses the ENVISAGE infrastructure to
track behavioral data, the ENVISAGE API can be used to download raw data for specific days. We also
provide a helper script to directly download raw data for an en re me span and to merge mul ple
days into a single file. This script can be obtained from ENVISAGE’s GitHub-repository34. The final
dataset has to be a JavaScript Object Nota on with Padding (JSONP) file. The JSONP file contains
one JavaScript Object Nota on (JSON) dic onary per line. The dic onaries require the following
mandatory fields to be used in the demonstrator:

app_key Iden fier of the virtual lab

user_id Unique iden fier of a learner

event Event which was triggered by the learner

ts Unix mestamp that indicates when the event was triggered

A more detailed descrip on of the fields can be found in D2.1 [13], Sec. 4.1. D2.1 also contains a
descrip on about the data types and which addi onal fields can be used. The following code snippet
represents a single dic onary of the JSONP file, i.e., a single line:

{
” u s e r _ i d ” : ” l e a r n e r _ 1 ” , ” t s ” : 1516095542 ,
” app_key ” : ” 1 ” , ” event ” : ” answer . que s t i on ”

}

6.1.1 Data Upload View

Once the data is in the correct format and has sufficient size, it can be uploaded to the ENVISAGE
backend to invoke the demonstrator. Currently, the demonstrator supports JSONP files which can be
op onally compressed via GNU zip. If the data is compressed, the file name should end with .gz.
The URL for the data upload is as follows:

34https://github.com/Envisage-H2020/Tools/blob/master/utility_scripts/merge_api_files.py

Page 47



Figure 20: Screenshot of the data upload for the predic on of at-risk students.

https://envisage.goedle.io/at-risk/upload.htm

Fig. 20 shows the upload screen. On pressing the submit bu on, the data is first uploaded to GIO’s
servers. The data is then checked for the correct format and a erwards a new process for learning a
model for the predic on of at-risk students is started.

6.1.2 Intermediate View

A er the dataset has been uploaded, the user gets an experiment id and a link poin ng to a result
page. This step is depicted in Fig. 21. In the background, the data has to pass the en re process
pipeline which was shown in Fig. 5. If users want to check results now, they can click the link. Other-
wise, they should save the experiment id for checking the results later. Depending on the size of the
dataset, results will be available sooner or later.

6.1.3 Results View

With the link from the intermediate page, one can access the result page. Due to the complex process
pipeline, the page might not be ready yet. If this happens, one will only receive limited informa on
and has to update the result page a few minutes later. This depends on the number of events and
students in the dataset. If one did not click the link a er the upload immediately but saved the
returned experiment id (exp_id), one can also obtain the results via the following URL:

https://envisage.goedle.io/at-risk/index.htm?exp_id=<exp_id>

Once the results are ready, one can obtain different descrip ve sta s cs about the dataset, e.g., the
number of events and students, and informa on about the model for the at-risk student predic on,
e.g., quality of the learned model and important features. An example screenshot of the result page
is shown in Fig. 22. The results can also be accessed directly from the authoring tool. A er the login,
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Figure 21: Screenshot a er the data upload showing the experiment id which iden fies the model
being learned in the mean me.

one has to select an exis ng project. Within the project, one has to select a scene and in the next
view, the at-risk student predic on appears in the menu. In summary, the results page contains the
following informa on:

Number of Unique Events The count of unique events in the dataset. This number corresponds to
the different types of events, e.g., add.bonding.

Number of Events This is the number of events which was uploaded from all users in the dataset.

Number of Students This is the count of students in the dataset.

Number of Churned Students The total number of students that were labeled as at-risk students in
the dataset.

Timespan The me interval from the first tracked data point to the last tracked data point in the
dataset.

Number of Observa on Days The number of days a user is observed before making the at-risk pre-
dic on (cf. Sec. 6).

Churn Window The churn window used in the experiment (cf. Fig. 6).

Number of Sessions The total number of sessions in the dataset. Deliverable D2.1 [13] explained
how sessions are calculated.

F1-Score The f1-score obtained by the model in a 5-fold cross valida on (cf. Fig. 4.4 for details on
evalua ng machine learning algorithms).

Top Countries A list of up to five countries that were observed most o en in the dataset.

Top Languages A list of up to five languages that were observed most o en in the dataset.

Top Features Up to five features which have the greatest impact from a sta s cal point of view that
lead to an at-risk behavior.
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Figure 22: Result page of the at-risk student predic on.
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6.1.4 Future Extensions

Right now, the insights into the at-risk behavior of students are somewhat limited and the model
cannot be used easily to predict behavior of new students. In the future, we plan to improve on both
of these issues.

Regarding the insights, we envision an algorithm that is capable of extrac ng addi onal and easy
to digest insights from the model. I.e., rules or examples why students are, or become, at-risk. This
should go beyond the single dimension that we present right now. For example, instead of just pro-
viding the informa on that a par cular event correlates with at-risk behavior, we want to present
combina ons of mul ple events and their characteris cs. E.g., students with a high number of event
A but a low average of event value B tend to have an increased at-risk behavior. When using the
learned models for predic ons, we also want to make sure that the quality of the model is suffi-
cient. To get a be er understanding of the model quality, tools such as ROC-curves [10] or confusion
matrices [34] can support teachers as well.

There are different op ons to make the predic ons of the model available. A straigh orward
approach would be to allow the user, i.e., game developer or educator, to also upload an addi onal
dataset with the most recent students for which predic ons are supposed to be made. These stu-
dents would not be used for training but instead those students would be evaluated by the algorithm.
The predic on for each student could be wri en to a result file. E.g., if one wants to use data from
the last two years for training but only needs predic ons for the current class which is using the lab.
Another approach would be to automa cally detect which students in the dataset are new and do
not qualify as training instances yet. These students could be removed from the training dataset and
instead be used to make a predic ons. Again, a result file could be provided with predic ons on
those users.

Students at-risk in the next 2 weeks
Con nue Uncertain Stop
45% 25% 30%

Table 3: Traffic light system for at-risk students.

One of the main problems, when it comes to interpre ng future behavior, is an easy to read rep-
resenta on of the predic ons. Without further knowledge and a concrete use case, understanding
future behavior is o en hard to grasp. Therefore, a traffic light system could help the teachers to
directly see how the behavior is distributed among the students. We have already had great success
in the past with traffic light based visualiza ons in marke ng se ngs. An exemplary visualiza on is
depicted in Tbl. 3. The next step for a teacher is to adjust a virtual lab based on insights gained from
the learned models. For example, if a feature like reading the manual or answering ques ons leads
to a reduced at-risk propensity. This closes the loop and nicely connects to the content adapta on
in the next sec on.

6.2 Content Adapta on

We will now describe the demonstrator of the content adapta on module. Similar to the demon-
strator of the predic on of at-risk students, we will explain different screens that are used within the
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Figure 23: Authoring tool showing all available strategies for a virtual lab.

en re process. All screens can also be accessed directly from the authoring tool. A er the login, one
has to select an exis ng project. Within the project, one has to select a scene and in the next view,
the dynamic content adapta on appears in the menu under “DDA”.

6.2.1 List of Strategies

The first screenshot from the authoring tool in Fig. 23 shows a list of all available strategies. This view
shows all strategies with basic informa on, such as the current counter, i.e., the number of mes this
strategy has been allocated to students, a maximum value which defines the limit of tries for each
strategy, and a weight that defines the probability of this strategy being returned. In many cases, a
lab has a large variety of strategies and showing only the ac ve ones is helpful. For that reason, one
can remove the inac ve ones from the view by clicking the checkbox next to “Ac ve”. Clicking this
checkbox leaves the user with only the currently ac ve strategies.

6.2.2 Add a Strategy

The view shown in Fig. 24 allows to add a new strategy to the set of available strategies. It only
requires a new name for the strategy and its descrip on in valid JSON. Here, one has to be careful
to enter JSON that is compa ble with the par cular virtual lab. In the case of the chemistry lab, an
example strategy could look as follows:
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Figure 24: Adding a new strategy for a virtual lab from within the authoring tool.
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Figure 25: Screen for tes ng a strategy.

[
”H2O” , ” HCl ” , ”H2O” , ” KBr ”

]

This strategy begins withwater (H2O), con nueswith hydrogen chloride (HCl), repeats water again,
and finishes with potassium bromide (KBr). While entering JSON is quite technical and not every
teacher may be used to that nota on, it has the advantage that it gives a lot flexibility to the dynamic
content adapta on. In the future, a developer of a virtual lab may provide a small tool that helps the
teachers to generate proper JSON. These tools could be integrated in the authoring tool as well for
each different type of virtual lab.

6.2.3 Test a Strategy

A er a new strategy has been added to a virtual lab, it needs to be ac vated and tested. By se ng
up a test, the strategy is ac vated and an upper limit of tries is set. The screen in Fig. 25 shows
how a test for a strategy is started. For new strategies, an ini al number is set that determines how
many students will see the strategy. For already tested strategies, the number can be increased if the
maximum has been reached.
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6.2.4 Future Views

There is a number of views that are currently work in progress and will be released in the near future.
This includes but is not limited to:

Edit View This view allows to edit basic proper es of a strategy such as the maximum number of
trials or the current weight. It is important to note that a change of the weight triggers an
update of the other strategies as well so that the probabili es add up to 100%.

Auto Redistribu on The “Edit View” will allow to manually change the weights of the strategies.
However, it is o en more desirable to have the MABs re-adjust the weights automa cally ac-
cording to the performance.

Deac vate a Strategy Stops a current test and deac vates a strategy.

Performance View This view compares the performance of different strategies for a specific me-
frame, e.g., the last month.

We have now seen how the demonstrator currently supports different types of machine learning
algorithms. The outlook in the next sec on describes in greater detail how these different models
and predic ons can be combined in the future.
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7 Outlook and Conclusion

As we have described in the previous sec ons, mul ple deep analy cs algorithms are opera onal
by now. We have already applied them to different virtual labs and the evalua on of the results is
s ll going on. Not every algorithm makes sense to be integrated into every virtual lab. For example,
the design of the Wind Energy Lab does not support the usage of the predic on of at-risk students.
Students may use the lab once to understand the physics of wind energy but are not necessarily
encouraged to use the lab mul ple mes. On the other hand, the at-risk student predic ons is tech-
nically ready to be used in the 3D versions of the chemistry labs but there is not always sufficient
data available yet to learn a model for each lab. For that reason, we are planning to finish the inte-
gra on of the predic ons into all labs, once enough data was gathered. We currently assume that
the next pilot phase will generated a batch of data at a reasonable scale to observe at-risk behavior
of students in the chemistry labs. Nevertheless, we have also shown with the help of game data that
the algorithms and the en re pla orm is capable of genera ng posi ve impact on a large scale and
in business relevant use cases.

We have not started yet to implement the reinforcement learning for content adapta on in small
steps as presented in Sec. 5. Here, one ac on in the algorithm amounts to adap ng the content.
The reward of this ac on is measured by students solving a task or exercise. The implementa on
of this approach in an educa onal se ng requires a lot data and we should validate the simpler ap-
proaches based on A/B tes ng or Mul -armed bandits first. Once we have sa sfying results from
those approaches, we are at a good star ng point to implement the more sophis cated reinforce-
ment learning approaches. Realizing the mul -armed bandit problem with help of reinforcement
learning might be a good approach to transit to the more advanced se ng.

One avenue for future work that we consider to be equally interes ng and poten ally easier to
realize in the remaining amount of me is the combina on of the predic on of at-risk students and
the content adapta on. As it has already been mo vated, the two approaches can be connected
by first con nuously making an at-risk predic on for students and adap ng the course material ac-
cordingly. For example, when the at-risk predic on indicates a high likelihood of a student failing
or dropping out of a course because it is too challenging, the pla orm should intervene. There are
different op ons to support those students. For example, the content for these students should be
extended in such a way that it offers more suppor ng material that guides the students in solving
the problems. In contrast to this, if the system iden fies students that only spend li le me in the
virtual lab but easily solve all challenges, the content should be expanded in such a way that these
students are challenged as well.

There are some technical extension that we consider to be meaningful and important for the
infrastructure and pla orm. For example, a proper management of machine learning models for
different teachers and virtual labs is very important. With new data arriving, models need to be up-
dated and the algorithms need to decide which data to take into account. For example, we have
observed that the virtual labs change substan ally over me. With educators revising labs, possibly
even based on the insights generated by the shallow and deep analy cs, the structure of the data
tracking changes. By doing so, previous datasets may be become obsolete and the algorithms should
primarily learn form the most recent data. Nevertheless, the old datasets can be used to bootstrap
the algorithms to learn more quickly. This en re process should be organized and implemented in
such a way that educators can be informed about the current quality of the data and the models.
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Teachers can even be guided to run certain experiments with the students to generate the next iter-
a on of datawithout harming the quality of teaching. Such approaches are o en referred to as ac ve
learning within machine learning. I.e., the algorithms request specific training examples to improve
the quality of the model. Similar to A/B tes ng and gene c algorithm in Sec. 5, we also have to be
careful when the algorithms suggest changes. All changes need to be compliant with the teacher’s
point of view and human intui on.

Let us briefly summarize the contribu ons and findings in the deliverable at hand. Besides provid-
ing an up-to-date overview on the Ar ficial Intelligence in Educa on community, our contribu ons
focused on the implementa on of deep analy cs and the evalua on of the algorithms in six different
case studies. We have shown how to use unsupervised clustering to group students based on their
behavior in Sec. 3. We compared two different clustering algorithms, namely k-means and archety-
pal analysis. A er examining the results, we concluded that archetypal analysis is be er suited for
clustering of students in the 2D Wind Energy Lab. We con nued by using supervised learning algo-
rithms to predict at-risk students and the performance of students in Sec. 4. We added three case
studies to validate these approaches by not only using data from virtual labs but also a large scale
dataset from an MMORPG. In Sec. 5 it was described how content can be adapted dynamically in
virtual labs. We showed how to extend a chemistry lab to integrate a simple content adapta on and
furthermo vated this approach by demonstra ng that this approachwas previously used in amobile
quiz game with great success. As this deliverable is of type “Demonstrator”’, we showed in Sec. 6 in
detail how the deep analy cs is integrated into the ENVISAGE authoring tool and gave references to
the corresponding source code if applicable.

While we have presented several algorithms in this deliverable and its predecessors, AI in ed-
uca on and deep analy cs for virtual labs is s ll at a basic level. Although we can borrow many
technologies from the gaming industry and rely on algorithms that have been analyzed for decades,
the educa onal se ng comes with its own challenges. For example, ethical obliga ons of teaching
restrict the possible tests of learning strategies and require a more careful approach. Addi onally,
privacy regula ons are jus fiably more restric ve when it comes to school educa on. Nevertheless,
the possible impact of AI in educa on is huge and the possibili es of personalized and ac ve learning
outweigh the challenges.
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