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Abstract

The initial work on deep analytics in ENVISAGE was introduced in D3.1 with the focus on unsuper-
vised methods and approaches used in game analytics. D3.2 now presents revised requirements
and updated algorithms tailored towards educational settings. We provide an extended overview
of “Educational Data Mining” and “Al in Education”, and we explain how existing approaches fit the
ENVISAGE project. We proceed by presenting unsupervised and supervised learning algorithms for
deep analytics within the educational context. The work on unsupervised learning extends D3.1 and
presents the clustering of students in the 2D Wind Energy Lab as an application. As examples for su-
pervised learning, we introduce the prediction of at-risk students and proficiency levels of students.
After identifying at-risk or low-performing students, the next step is to intervene and to help more
students to succeed. Here, one approach is to adapt course material to better fit the students’ needs.
Therefore, we present approaches for dynamic content adaptation and explain how virtual labs can
be adapted to personalize learning. Before presenting our conclusion, we show examples from the
ENVISAGE platform and demonstrate the current capabilities of the deep analytics components.
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Executive Summary

Theinitial work on predictive analytics in the ENVISAGE project was introduced in deliverable D3.1 [16]
with the main focus on unsupervised methods and approaches used in games and game analytics.
Deliverable D3.2 now presents revised requirements and updated algorithms tailored towards edu-
cational settings but also tested on games. We extend the overview on existing approaches in the
fields of “Educational Data Mining” and “Al in Education”, and we also explain how existing methods
from other areas need to be adapted to fit the ENVISAGE setting.

We start by presenting revised unsupervised learning algorithms in Sec. 3 which directly extend
the work in D3.1 [16]. We also present a case study in Sec. 3.2 which gives results on using differ-
ent clustering algorithms on student data obtained from the 2D Wind Energy Lab. We proceed by
presenting supervised learning algorithms for deep analytics within the educational context. Here,
we explain two different use cases where supervised learning can be used to personalize the user
experience in virtual labs. In particular, we present a prediction of at-risk students and a prediction
of students’ performance within the Programme for International Student Assessment (PISA) 2012
framework for proficiency classes. We also explain the necessary data preprocessing and feature
engineering in detail. We do not only evaluate our algorithms on behavioral data from a chemistry
lab and the 3D Wind Energy lab, but we also apply our algorithms to player data from a well known
online game in order to validate the capabilities on a larger scale.

After identifying students at-risk or students who are predicted to have a lower performance,
the next step is to intervene and to support those students to succeed. One possible approach is to
adapt course material dynamically to better fit their needs. Therefore, we look at dynamic difficulty
adjustment in Sec. 5 and explain how course material can be adapted to fit different segments of
students. As an example, we use methods from statistics and machine learning, to adapt the content
in a chemistry lab. We explain in detail how the chemistry lab can be adapted to allow the educator
to define different learning strategies. We also describe different approaches that can be used to
test and validate different learning strategies to find the optimal strategy for a particular lab. Since
the implementation of the dynamic content adaptation is still on a prototype level for the chemistry
lab, we also provide a case study from one of GIO’s customers. This case study in Sec. 5.3.2 details
how dynamic difficulty adjustment can be used in quiz games to improve the user experience. Quiz
games can be related to educational settings easily and we pave the way for additional experiments
in learning environments.

Before presenting our conclusion on the current efforts and motivating future work, we show
examples from the ENVISAGE platform and demonstrate the current capabilities of the deep analytics
components. The description of the demonstrator highlights how different deep analytics algorithms
are already integrated into the authoring tool and shows how all pieces from the ENVISAGE project
interact with each other.
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Abbreviations and Acronyms

Al Artificial Intelligence

AIEd Artificial Intelligence in Education

ANN Artificial Neural Network

ANOVA Analysis of Variance

APl  Application Programming Interface

BnS Blade & Soul

CIG Computational Intelligence in Games
DDA Dynamic Difficulty Adjustment

EDM Educational Data Mining

GDPR General Data Protection Regulation

GPU Graphics Processing Unit

GTM Google Tag Manager

JSON JavaScript Object Notation

JSONP JavaScript Object Notation with Padding
KPI  Key Performance Indicator

LMS Learning Management System

MAB Multi-Armed Bandit

MMORPG Massive Multiplayer Online Roleplay Game
MOOC Massive Open Online Course

Pll  Personally Identifiable Information

PISA Programme for International Student Assessment
SDK Software Development Kit

UCB Upper Confidence Bound
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1 Introduction

The goal of the ENVISAGE project is to improve virtual labs through a structured and data-driven pro-
cess. First, this requires data from the learners, i.e., the students of virtual labs. This data is then
analyzed and prepared to be used by educators. Next, an authoring tool is required that is capable
of adapting existing virtual labs based on the insights from the data analysis. The deliverable at hand
focuses on the data analysis and insights that can be automatically obtained from the data. While
work package 2, e.g., deliverables D2.2 [25] and D2.3 [15], were concerned with shallow analytics,
this deliverable focuses on deep analytics, i.e., using algorithms to analyze and understand behav-
ioral data from students automatically. This deliverable describes the continuation of the work on
deep analytics presented in deliverable D3.1 [16]. While D3.1 focused on unsupervised learning, the
deliverable at hand extends the deep analytics part of the ENVISAGE project to additional types of
machine learning. Additionally, this deliverable introduces approaches for content adaptation, allow-
ing teachers to change the configuration of a virtual lab in order to test different learning strategies
and to incorporate insights from the data analysis.

When talking about deep analytics, it is important to distinguish between different types of ma-
chine learning. Among other characteristics, machine learning differentiates between unsupervised
and supervised learning to discover patterns in data. Unsupervised Learning does not require any
labeled data and can cluster students for example in different groups without knowing these groups
in advance. On the other hand, Supervised Learning requires annotated datasets in order to learn
a model. In classification tasks, these labels categorize students in previously known groups. For
example, one can build a dataset for training an algorithm with two labels by classifying students if
they passed an exam or failed. Besides unsupervised and supervised learning, another form of ma-
chine learning exists which is called Reinforcement Learning. Here, the algorithm learns from actions
and their rewards, i.e., there is not a gold set of annotated labels available in advance but a reward
function instead that scores different actions. Different use cases require different types of machine
learning and in this deliverable, we provide examples for each setting. For example, unsupervised
learning is used to cluster students into different groups depending on their learning behavior in
Sec. 3. Supervised learning is used to detect at-risk students and the learned models provide insights
into the root causes of students losing interesting in a virtual lab in Sec. 4. Lastly, when designing
new strategies to personalize and improve learning, there is no knowledge in advance how these
new strategies perform. Here, and in the automation of the entire process, different forms of rein-
forcement learning can be used as motivated in Sec. 5.

Deliverable D3.1 already covered unsupervised learning for educational purposes. For example,
it was described in Sec. 5 how k-means and archetypal clustering can be used to group students.
Here, we present first results on using those algorithms on virtual lab data. To be more precise,
the case study in Sec. 3.2 describes how data from the 2D Wind Energy Lab can be used to cluster
students. This highlights how the past months have been used to actively transfer approaches from
the gaming industry to the education sector. As the case study shows as well, the algorithms are
equally applicable in education and result in interesting insights into the learner’s behavior.

We will proceed as follows. First, we will summarize the efforts of the communities in Artificial
Intelligence (Al) and Machine Learning when it comes to applying these algorithms in education and
e-learning. Next, we will present the advancements of the unsupervised learning approaches as a
sequel to deliverable D3.1. This includes one case study on virtual lab data. In the following section,
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we will describe in detail how supervised learning is used to predict at-risk students and students’
performance. This includes three case studies giving results on the algorithmic capabilities. After-
wards, our approach to dynamic content adaptation is presented and we also give two examples how
virtual labs can benefit from the adaptation. Before giving an outlook on the next steps, we provide
the reader with an extensive description of the demonstrators and provide sufficient instructions so
that the results can be tested and verified.
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2 Analytics and Al in Education

When reviewing ongoing research and available products for deep analytics, different terminologies
can be observed which were established over the past years. Afew years ago, Big Data was hyped and
in particular companies were referring to this term. This wave set the expectation that large amounts
of data would generate insights previously not available. There are plenty of books describing how
Big Data can help to improve learning in school and higher education. From the Big Data hype, two
research communities evolved: Educational Data Mining (EDM) and Learning Analytics [29, 4]. In
D3.1[16], the differences between EDM and Learning Analytics were discussed in detail. In a nutshell,
EDM is a more automated approach to gain information from educational datasets, and Learning
Analytics is a tool that helps (educational) analysts to interpret the data. In recent years, Al has
become more popular again and people start to rephrase technologies in terms of Al to possibly
reach a wider audience and to gain more traction. For example, algorithms from data mining are
also often applied in Al scenarios.

As D3.1 also mentioned, the gaming industry is typically a few years ahead of other industries
and in particular ahead of the education sector. Al and data-driven thinking is slowly becoming the
status quo [37]. A lot of service providers in the market offer different technologies to personalize the
gaming experience. Among other companies, deltaDNA* and Optimove? offer services to enhance
games with help of Al and machine learning.

In contrast, there is a big gap in the usage of such technologies in the field of education. Mostly
former researchers are building platforms and software that is capable of closing this gap. It is also
important to distinguish between the markets in the United States and Europe. With the EU General
Data Protection Regulation (GDPR), e.g., Article 22 (“Automated individual decision-making, includ-
ing profiling”), it will get more challenging for European education institutions to implement adaptive
learning mechanism. The GDPR will establish high standards when it comes to data tracking and using
such data for personalization. It will be necessary to obtain the consent of a learner when mecha-
nisms are implemented that are applying automated decision-making based on personal informa-
tion. Of course, when tracking children and teenagers in schools, this topic is even more sensitive
and parents’ consent is necessary to comply with privacy protection standards.

Visiting important trade shows in e-learning and digital education also underlines that the educa-
tion sector is often inspired by technologies used in gaming. For example, Virtual Reality is certainly
attracting a lot of attention in education, while the gaming industry has been pushing this technology
for several years by now3. Additionally, learning apps in form of quizzes are also quite prominent. Of-
ten Learning Management Systems (LMSs) are extended to feature quiz apps to make learning more
mobile and provide another engagement opportunity with the course material.

Returning to the discussion about different terminologies, one will certainly notice that there is a
big overlap. For example, machine learning can be seen as a subfield of Al. Algorithms used in data
mining, such as clustering or classification, are certainly found in machine learning as well. However,
data mining also lends itself to Big Data and analytics, as statistical methods are used to detect trends
in data and to extract actionable insights. While analytics typically still involves a lot of human labor,
Al stands for an automated processing of data, offering insights that were not accessible to humans

'http://www.deltadna.com
Zhttp://www.optimove.com
Shttp://blog.goedle.i0/2018/02/01/trends-in-digital-education-at-learntec-2018/

Page 10



before, and predicting future behavior.

In 2016, Pearson and the UCL Knowledge Lab published the open idea report Intelligence Un-
leashed [4] which discussed the opportunities and future development of Artificial Intelligence in Ed-
ucation (AIEd). The report describes three kind of AIEd models. First, the pedagogical model which
represents the knowledge and expertise of teaching. Second, the domain model which represents
the knowledge of the subject that is being taught. And third, the learner model which represents
the knowledge of the learner. Within the ENVISAGE project, there are intersections with all of those
three models which is also highlighted by the composition of the consortium. The report also de-
scribes two AIEd applications. First, prediction of at-risk students which is already used in schools
and universities. Second, a model-based adaptive tutor that has a content adaptation module.

It should be clarified that the prediction of at-risk students is not available as an out-of-the-box
solution. However, there are two service providers on the market which are actively advertising the
prediction of at-risk students. On the one hand, the open source LMS Moodle* and on the other
hand the commercial company Blackboard®. The full adaptive tutor as envisioned in [21] as an AIEd
application is to the best of our knowledge not implemented in any products yet. The content adap-
tation process has similarities to the Dynamic Difficulty Adjustment (DDA) which is currently being
developed for content adaptation in the ENVISAGE project. The main difference is that the content
adaption within ENVISAGE is a more generalized approach that adapts content based on behavioral
information, not only based on domain knowledge. Sec. 4 will show how prediction of at-risk stu-
dents is implemented and Sec. 5 explains how the content adaptation works in a virtual lab.

2.1 Recap of the AIEd market

Beside Moodle and Blackboard, there are other companies focusing on building a bridge between
machine learning and education. A few successful examples are presented in the following. Mindojo®
and CENTURY? are both platforms that provide AIEd in general. There are also more specialized com-
panies, especially for subjects such as math, where a couple of companies are using Al for education.
One example is ScreenTime Learning®, an app that was released in December 2017 to prevent an
excessive usage of smartphones and tablets by children. A child gets a math task which then locks
the screen until it is solved. ScreenTime Learning uses DDA to adjust the difficulty of the math tasks
for a child. Additional examples are the online courses by Trueshelf® or bettermarks*®. Both offer
adaptive learning in their courses which directly integrates in their learning material. Adaptemy!! of-
fers custom solutions for adapting educational content for learners. We will provide more examples
in the sections below for particular use cases and applications.

*https://www.moodle.org
Shttps:/www.blackboard.com
®https://www.mindojo.com
"http://www.century.tech
8https://www.screentimelearning.com
*https://wuw.trueshelf.com
Onttps://wuw.bettermarks . com
Uhttps://wuw.adaptemy. com
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2.2 Restrictions in School Settings

One has to be careful when it comes to privacy regarding the analysis of a learner’s behavior. Espe-
cially information about children are very sensitive. All analysis, methods, and software presented,
make use of telemetric data but do not require personal information. By avoiding any kind of Person-
ally Identifiable Information (Pll) or demographic information, the privacy of children is respected.
In many cases, anonymous data is already sufficient to gain valuable insights that help the educators
to improve the quality of the course. Additionally, insights on the level of groups of students can be
informative without harming the privacy of individuals.
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Figure 1: A comparison between cluster locations on the same dataset from a game when using
either k-means (indicated by K’s) or archetypal analysis (indicated by A’s).

3 Unsupervised Learning

Unsupervised learning was the main approach adopted for the 2D Wind Energy Lab as presented and
detailed in D3.1 [16]. In this section, we present the algorithms adopted and detail their application
to the 2D Wind Energy Lab. A key goal of ENVISAGE is to understand how different students’ behav-
iors are indicative of different groupings within, e.g., the whole student base or particular classes. In
the terminology of EDM, this is a Structure Discovery problem, which is a well-known class of prob-
lems. For both, game analytics and educational data analysis, this is typically addressed by applying
clustering methods, that partition observations into groups. Two clustering algorithms have been
employed for the datasets collected from the virtual labs: k-means and archetypal analysis.

In brief, k-means allows for identifying groups based on typical behavior whereas archetypal anal-
ysis, allows for identifying groups based on extreme behavior. While both types of groupings may be
of interest to teachers adapting virtual labs to suit their needs, archetypal analysis turned out to be a
far more useful approach to clustering as it manages to better separate students within meaningful
classes as mapped to the PISA 2012 categorization. The next section describes the final algorithm
used.

3.1 Archetypal Clustering and Analysis

While k-means and similar algorithms such as k-medoids focus on identifying groups around average
behavior in the data, archetypal analysis is focused on identifying extreme examples in the data. The
algorithm works by drawing the minimally possible convex hull around all the observed data points.
Using this hull, the algorithm searches for linear combinations of the observed data points that min-
imize Eq. 1 to determine coefficients that allow the data to be represented by the archetypes [5]:
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Figure 2: k-means in the 2D Wind Energy Lab. The cluster labels assigned are as follows Ill: Reflec-
tive/communicative (class number 4); Il: Advanced (class number 2); I: Beginner (class number 1);
<l: No problem solver (class number 3).

1
argmin =||X — XSH|[3 (1)
SH 2

Observations are then labeled according to their closeness to these archetypes, using a distance
function, much akin to the way observations are labeled in k-means. When used in combination
with k-means, archetypal analysis provides a useful alternative perspective that allows the user to
see hypothetical extreme examples. This can help the user understand the overall directions of the
behavior that the players of a game or the students in a digital learning environment are exhibiting.
Fig. 1 shows a comparison of cluster centers found using k-means and archetypal analysis, respec-
tively, when applied to the same dataset of player actions in a game.

3.2 Case Study: 2D Wind Energy Lab

Fig. 2 and Fig. 3 show a comparison of cluster centers found using k-means and archetypal analysis
when applied to the same dataset of player actions in the 2D Wind Energy Lab. Both algorithms
consider the following shallow analytics and tasks definitions (ad-hoc designed metrics) as described
in D2.4 [12].

Time-on-task This metric measures the time it took the students to reach correct power from a state
of being either under or over powered.

Correct power The amount of time the student has the wind simulation correctly powered.

Over power The amount of time a student has the wind simulation over-powered.
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Figure 3: Archetypal analysis in the 2D Wind Energy Lab. The cluster labels assigned are as follows lll:
Reflective/communicative (class number 2); Il: Advanced (class number 1); I: Beginner (class number
4); <I: No problem solver (class number 3).

Under power The amount of time a student has the wind simulation under-powered.

Based on the above in-lab on-task behaviors, learners are clustered into four typical groups (PISA
2012 classification; D1.1 [32]) by either method. In particular, the four clusters are as follows:

e |lI: Reflective/communicative

Il: Advanced

I: Beginner

<I: No problem solver

The difference in the way the two algorithms operate is rather visible from Fig. 2 and Fig. 3. The
figures display the clusters as determined by the two algorithms and the data points within the four
feature planes, which are projected onto the two-dimensional figure via principal-component anal-
ysis. We use this case study example to demonstrate the advantages of archetypal analysis over
k-means in the task of automatically clustering learners according to their performance in the 2D
Wind Energy Lab (PISA classification). As it is directly observable from Fig. 2, k-means places only
two learners who under-power the Wind Energy Lab in their own category (category 3 in green color
or PISA class >), since they are rather dissimilar from the rest of the group. In general, k-means tends
to place most students within the center of the hypersphere as this is the way the algorithm oper-
ates. In our particular domain, most students perform alike and that results in crowded data points
for k-means to cluster. This shows coherence in the class, but does not show trends.
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Figure 4: The four PISA clusters depicted as a pie chart in the visual analytics dashboard. For more
details about the visual analytics service please refer to D2.4 [12].

In contrast, archetypal analysis, as displayed in Fig. 3, correctly identifies which directions learners
are veering in, and assigns a group of students to the “low-performing” category (category 3 in green
color or PISA class <I) and correctly identifies students moving toward the “high-performing” category
(category 2 in red color or PISA class Ill). It is important to note that archetypal analysis, in contrast to
k-means, is able to identify two groups of learners who (groups 3 and 4) underperformed in different
ways: the first is over-powering the wind energy whereas the latter is under-powering the lab.

Also notice in Fig. 3 that time-on-task is inversely related to correct power, whereas under/over-
powered is unrelated. In a nutshell, Fig. 3 illustrates that good students are faster than average/poor
students, but slow speed does not tell us what kind of errors a student would make. This example
dataset validates that time-on-task is a good indicator of performance and learnability. In particular,
lower time-on-task predicts better performance.

Given the above qualitative characteristics and benefits of archetypal analysis over k-means in
the Wind Energy Lab domain, we opted for the former approach for clustering learner performance
in virtual labs. The cluster membership (<I to Ill) distribution is reported back through the analytics
service to the visualization front-end. A depiction of the service is shown below in Fig. 4. The imple-
mentations used to experimentally realize the unsupervised models described in this document can
be found at the following URL:

https://github.com/Envisage-H2020/Analytics-Server

Itis important to note that the unsupervised learning approach was adopted only for the 2D Wind
Energy Lab and not for its 3D version given the substantial differences between the two labs. In the
supervised learning section, we detail the deep analytics approach employed for the 3D Wind Energy
Lab (Sec. 4.5.3).
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4 Supervised Learning for Educational Scenarios

In deliverable D1.1 [32], it was discussed that statistics from shallow analytics like time-on-task can be
combined with deeper analytics to provide insights to a student’s learning process. For example, an
at-risk student prediction supports the identification of learners who are not going to continue using
a virtual lab or having troubles following the course material. This leads to insights about students
where one knows in advance that a learner gets stuck or does not finish parts of the solution. With
such a forecast of students’ behavior, it is possible to pro-actively support the students by improv-
ing their achievements and success. Two examples for proactive actions are (human based) support
through blended learning or with (machine based) content adaptation. The content adaptation ap-
proach is described in Sec. 5. Another use case for supervised learning in education is predicting
students’ performance. To simplify the problem formulation, one can map the scores of students to
the PISA 2012 categories. By doing so, each student gets a label based on the achieved score. Af-
terwards, one can learn a model that predicts which students fall in which PISA 2012 category based
on their behavior. In this section, we describe those two use cases for supervised learning in greater
detail. Before doing so, we give an overview on current approaches in this area. We finalize this
section by presenting three case studies that show first results on using the algorithms on real-world
data.

4.1 State-of-the-Art

At-risk student prediction is quite similar to churn prediction. In the gaming industry or telecommu-
nication industry, churn prediction has been applied for years, if not decades. This is originated by
the fact that retention is one of the most important Key Performance Indicators (KPIs) in these ar-
eas. Also in the academic research, churn prediction has been analyzed for years, while prediction
of at-risk students in virtual labs is relatively new. The at-risk student prediction has already found
its way in the industry, with companies offering it as a service. Performance prediction of students
is a research field that has not found its way into products like at-risk student predictions yet. But,
there are a lot of academic research projects which cover this topic. These focus mainly on higher
education though. The state-of-the-art section gives an overview about churn prediction in other in-
dustries and the prediction of at-risk students in educational settings. Additionally, a brief overview
about the current academic research on performance prediction is provided.

4.1.1 Academic Research

Because of the strong similarity between learners’ behavior in virtual labs and players’ or customers’
behavior in games or apps, different resources were taken into account to develop predictions of
at-risk students. Predicting churn has a long history. For example, in 2000 Mozer et al. [27] already
published work on churn prediction for a telecommunication carrier. A more recent publication about
churn prediction in a setting more similar to virtual labs can be found in [14]. Here, player churn
in free-to-play mobile games was analyzed and predicted. The work in [14] also inspired the basic
features which were used in the following sections. Additional inspiration for features, more focused
on educational data, can be found in the literature about community inquiry models. This is also used
by Moodle in their module for prediction of at-risk students. Inspired by the work from Garrison et.
al [11], the features are based on three pillars: cognitive presence, social presence, and teacher
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presence. Also the work by Marks et al. [23] and Slavin et al. [31] describe how important time on
task is. This fact has also been acknowledged in previous deliverables within the ENVISAGE project
(cf. D1.1 [32] and D1.4 [24]).

In e-learning, the information about at-risk students is very important. Prior knowledge about
students possibly dropping out can be used to increase retention by taking proactive measurements
to prevent the dropout from actually happening. In 2009, Lykourentzou et al. [22] applied machine
learning on data from Massive Open Online Courses (MOOCs) to predict dropouts in online courses.
Kai et al. [18] used student interaction data from online courses to build prediction models. These
models predicted at-risk students and the future student registration behavior for online courses.
The second use case is rather a conversion prediction, i.e., the prediction if a student will enroll for
a course in the future. A conversion prediction can also be used to predict if a student passes an
exam or not. In more advanced settings, this can be extended to even predict a student’s score or
grade in an exam. Having such information at hand can further help to improve students’ success rate.
Imagine having a list of students available a few weeks ahead of an exam that indicates which student
could benefit from additional help. Most of the research on this topic is done with higher education
institutions or online courses. Along those lines, Al-Seleem et al. [2] build a model that predicts a
student’s grade based on their academic records. The work by bin Mat et. al [6] covers student
performance predictions in distance higher education. The authors also discuss the effectiveness
of active learning methodologies in predicting student’s behaviors. Shahiria et. al [28] present a
systematical review of the literature on predicting student’s behavior. This work covers approaches
on predicting a student’s performance and evaluates different algorithms.

4.1.2 Industrial Approaches

Moodle, one of the most frequently used open source LMS, has integrated an at-risk student predic-
tion in their 2017 released version 3.4'2. The prediction of at-risk students is integrated in the core of
the software. The results of the predictions are binary, i.e., either a student drops out of a course or
remains an active member. Besides these results, Moodle offers opportunities to reach out to at-risk
students to influence their behavior in a positive way.

A more business oriented application is offered by Blackboard*? since 2016. The solution is called
Blackboard Predict and is currently in a beta phase. It is planned to be released in Q1/Q2 2018.
Blackboard is a full service provider for digital education. This includes communication services for
different stakeholders (e.g., teacher, student, or parent) and an LMS among other solutions. Their
website provides a full catalog of products and services'®. A deeper look at Blackboard Predict in
particular shows interesting applications. Blackboard Predict consists of three parts:

e prediction
¢ visualization of results

e communication for engagement

Phnttps://docs.moodle.org/dev/Moodle_3.4_release_notes
Bhttp://blog.blackboard.com/introducing-blackboard-predict/
¥https://www.blackboard.com
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Figure 5: The process pipeline for at-risk student predictions.

Blackboard describes in their blog that they are aiming at a shift in perspective and want to focus more
on behavioral information. Their argument is that there are no at-risk students in general, instead
students are classified as being at-risk of not finishing a task. This definition does not only integrate
better in an educational setting, it also points out the limitations of predictions and frames the at-risk
prediction as a tool to improve software-based learning. Moodle’s prediction of at-risk students and
Blackboard Predict have one thing in common, both approaches heavily rely on meaningful features.
In turn, the availability of these features strongly depends on a well implemented tracking and clean
datasets with behavioral data about students.

Moodle offers a predefined set of features and provides an internal tracking. This allows to create
a model which can be applied within the Moodle LMS but at the cost of flexibility. One should also
note that it is only possible to make at-risk predictions on a course-level at the moment. However, in
Moodle one can add custom predictions and the entire prediction code is open source. While there
is an Application Programming Interface (API) for adding data and creating new features, one should
not underestimate the necessary expert knowledge in machine learning and software development
to make use of these features. In comparison to Moodle, Blackboard's offerings are more focused on
consulting. For example, they help to identify and build features for custom predictions. One should
also highlight that Blackboard Predict is not limited to their own platform. They also offer solutions
for Moodle, for example at-risk predictions are part of X-Ray'® which is Blackboard’s learning analytics
suite for Moodle. Besides that, one can also integrate Blackboard Predict into custom solutions. They
support a customer from defining a prediction, over tracking and aggregating the data, learning the
model, and lastly using the predictions from the model for proactive measures. In the next section,
we will give more details on the at-risk student prediction model in ENVISAGE.
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Figure 6: The figures explains the observation window and churn window used in building the
dataset.

4.2 Prediction of At-Risk Students

Similar approaches to an at-risk student prediction are also used in the gaming industry, as well as
for many other apps where retention is a crucial KPI. In gaming, one typically refers to churn pre-
diction and in human resources departments, people refer to the prediction of employee turnover.
Games and other industries provide many different approaches to keep players, users, or customers
engaged. These methods range from basic interactions, over automated reminders, to the entire
personalization of communication and the individualization of content.

While the gaming industry has been utilizing churn prediction for years, there are only a few
services which offer a prediction of at-risk students as we have seen in the previous section. While the
solution to the prediction problem may be technically similar, the surrounding conditions in education
differ significantly. The at-risk prediction tries to classify learners who will stop using a virtual lab, fail
an exam, or cancel an entire course or degree. In the following, we present a process pipeline for the
prediction of at-risk students developed for the ENVISAGE project. The pipeline is depicted in Fig. 5.

We now describe the different components for the at-risk student prediction. It starts with the
process of collecting or importing the data, box 1 in Fig. 5. Afterwards, the feature extraction process
is triggered (box 2). Following this, the data is preprocessed (box 3) for being used in machine learning
algorithms. The resulting data is then used as input for different classification algorithms (box 4).
Lastly, the predictions are inferred based on the learned model (box 5). In Sec. 4.5.1 and 4.5.2, we
will present two case studies that make use of the ENVSIAGE pipeline. The first case study is based
on a virtual chemistry lab that was described in D1.1 [32] and the second case study is based on
gaming data which is in its nature very similar to a virtual lab. Additional gaming data was taken into
account, as the amount of data resulting from the virtual lab was limited at the point of writing this
deliverable.

As we have previously described, being an at-risk student indicates a high likelihood of not com-
pleting a certain course, task, or stopping to learn. The prediction of at-risk students is based on su-
pervised learning algorithms. Supervised learning means that the algorithm requires labeled training
data. Therefore, historical data is needed. This means one needs data from the past that provides
information about students that canceled their ambitions to learn for a course or exercise.

Bhttps://wuw.blackboard.com/education-analytics/xray-learning-analytics.html
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A possible labeling process looks like the one given in Fig. 6. Users are observed over a span of
two weeks in total. Assuming, one wants to predict the at-risk students after one week, the “churn
window” amounts to seven days. Correspondingly, we refer the “observation window” as the first
seven days of the total time span of two weeks. To construct labeled training instances, one uses
students’ data from the first week to construct features and checks if they are active in the second
week to label them. Students who are not active in the second week are labeled as “at-risk students”,
i.e., true. Those who are active in the second week are labeled as false. This corresponds to the
binary classification which is used in Moodle as well. But, there is one pitfall regarding the PISA 2012
framework. On average, 10% of the learners have a high proficiency level. Some of these learners are
very likely to not return to the lab because they do not require as much learning time compared to
the average student. The algorithm now possibly identifies such learners as at-risk students because
they are less likely to return. Adding additional learning content is not appropriate for them, as
they are already performing well. For that reason, one should take performance into account before
automating decisions or making content adaptations.

4.2.1 DataIlmport, Feature Extraction, and Preprocessing

Before the feature extraction can begin, the data has to be imported and prepared for the extrac-
tion process. Typically, data has to be aggregated on a user level and sorted chronologically. Often,
additional meta data is added to the user profiles from external sources. For example, resolving IP
addresses to locations. The quality of the feature extraction depends on the number of events and
attributes, as well on a proper tracking which is the basis for obtaining the data. Often, data comes
from different platforms and sources. For example, in the ENVISAGE project virtual lab data can be
received from a Google Tag Manager (GTM) integration or from the ENVISAGE Unity Software Devel-
opment Kit (SDK). The data format and tracking scheme, which applies to GTM and the Unity SDK, is
described in D2.1 [13]. Once the data has the appropriate format, the data aggregation and augmen-
tation process is started. This process is also described in detail in D2.1 [13]. The case study about
at-risk students in Sec. 4.5.1 and the churn prediction case study in Sec. 4.5.2 are both depending on
this data aggregation and data augmentation process. The student performance prediction used the
raw data directly and applied an additional preprocessing for the feature extraction. This is described
in more detail in the case study in Sec. 4.5.3.

Features are the core of a machine learning model. They describe and represent the behavior
of a student. The algorithms use features and their weights to build a model. An example feature
is the count of a certain interaction. In the chemistry lab, this could be the information on how
often a learner has added a bonding. Another feature could be the time between two sessions.
This so called “inter-session time” is typically averaged over all sessions. An increasing inter-session
time often indicates at-risk behavior. If enough learners have been observed, we can learn a model
based on the features. The model can then classify if a learner is at risk of not coming back. The
model will internally represent certain rules for different behaviors. For example, if learners, who
are coming back frequently, have often added a bonding, the feature indicating the count of this
event will have a strong impact, when discriminating those learners from at-risk students. A lot of
the features are inspired by the work in [14, 30]. Based on GIO’s platform, the ENVISAGE project has
a large toolbox of features at its disposal. For the educational setting, and based on the educational
relevant parameters proposed in D1.4 [24], we created additional features, which include:
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time-on-task How much time does a student need for a certain task?

time between tasks How much time has passed between two tasks?

current absence time How long has the student been absent from the virtual lab?

Other features, that are more general, can be grouped in different kinds of behavioral descriptions:

basic activity Measuring basic activity such as the number of days a student has been active or the
total number of sessions.

event counts Countingthe number of times an event or an event-identifier combination occurs. E.g.,
the number of times a user added an electron to a bonding in the chemistry lab.

event values Mathematical operations on event values, e.g., the sum of correctly answered ques-
tions or the mean value of points scored.

curve fitting Curve fitting can be applied to time series data. Parameters, such as a positive slope of
a inter-session time series, indicate an increasing motivation in the virtual lab. More details on
this can be found in [14].

frequency Students’ activity can be transformed from a time series to a frequency domain. This
allows to estimate the strongest recurring frequency of a student.

social These features can count the number of connections within a social network of students'®.
Other features indicate if a student is connected to other classmates that may be important
for the mutual learning progress.

4.2.2 Classification Algorithms

There is a variety of classification algorithms that can be used for the prediction of at-risk students.
GIO’s platform works agnostic of particular algorithms and chooses the most appropriate one for each
problem and dataset. We transferred this agnostic approach to the at-risk student prediction within
ENVSIAGE. Therefore, one the following algorithms is typically used within the system, depending on
the datasets and additional parameters:

e Logistic Regression
¢ Naive Bayes

* k-Nearest-Neighbors
¢ Decision Trees

e Random Forests

e Gradient Tree Boosting

160ne should note that these kinds of features require virtual labs that allow social interactions.
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e Artificial Neural Networks
e Support Vector Machines

When testing different algorithms for the prediction of at-risk students, we relied on the implemen-
tation of the algorithms in the scikit-learn*” Python library. For Artificial Neural Networks (ANNs), we
also used TensorFlow®. All ANNs ran on an Nvidia general purpose Graphics Processing Unit (GPU).

4.2.3 Choosing an Algorithm and Parameters

Every algorithm has strengths and weaknesses. On top of that, algorithms typically cannot be used
out of the box with default parameters. Therefore, we have to optimize the parameters first. This is
typically done with help of an automatic parameter optimization.

There are different kinds of parameter optimizations. The simplest one is a brute-force grid
search. A grid search finds the best configuration for an algorithm based on a given space of parame-
ters. In a nutshell, an algorithm has different parameters, e.g., a logistic regression can be configured
with an automatic normalization of the data, different optimization algorithms, various thresholds,
and options. If one wants to validate if a parameter has impact on the result, one adds the parameter
to the search space of the grid search. Then, the algorithm is evaluated on every combination of the
passed parameters, i.e., on every instance in the search space. Typically, the evaluation is done with
a cross validation to get stable and reliable results. The cross validation splits the training dataset into
k different folds. Each fold is a random subset of the data. Based on the folds, the data is partitioned
into a training and test datasets. Typically, one fold is used for testing and the remaining folds form
the training dataset. Depending on the dataset and classification problem, different scores are used
for the validation. Accuracy and f1-score, as described in Sec. 4.4, are typical examples.

A basic grid search is very time consuming because all possible combinations of a given param-
eter space need to be tested. A smarter and faster way to approximate the optimal parameters is a
Bayesian optimization, e.g., as described in [9]. Bayesian optimization does not test every item in the
entire search space but instead samples configurations from the space and tries to search the space
in an intelligent way. This avoids testing all configurations of the search space and the approach tries
to avoid configurations that are not promising. Naturally, this also introduces the risk of trapping into
a local optimum, i.e., not finding the best parameters available in the search space.

4.2.4 Fitting the Model and Making Predictions

The whole procedure of parameter optimization is done to obtain a well performing prediction model.
After the best parameters have been found, the model is trained with the winning parameters. The
whole process is done in the “Model Learning and Parameter Optimization” part of the infrastructure
(cf. box 4 in Fig. 5). Afterwards, the model is available in the GIO infrastructure and can classify new
students (cf. box 5 in Fig. 5).

If one wants to know the probability of learners being at risk of not returning to a virtual lab,
GIO’s APl can be queried for these learners. By default, these predictions are done in a batch-wise
fashion. Every night, learners active within a given time frame are taken into account. These learners

Yhttp://scikit-learn.org
Bhttps://www.tensorflow.org
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are then classified based on their behavior. The result is a probability for each learner of returning
to a virtual lab. Through the API, one can obtain a list of user identifiers and their at-risk probability.
By predicting the current likelihood of a student every day, we create an at-risk profile of students.
These profiles could support a teacher to respond if the probability increases over time for certain
students. Platforms such as Moodle or Blackboard offer communication modules, allowing to in-
teract with students directly. For example, if the at-risk probability increases, the teacher is alerted
and encouraged to support the student. GIO’s platform already offers similar capabilities for market-
ing purposes and is currently extending it to use cases within education. As discussed before, this
needs to respect more sensitive privacy regulations and restrictions. Additionally, we have added
an demonstrator for historic data for the ENVISAGE project. One can upload historic raw data in the
format described in D2.1 [13] and get a first impression on what the model looks like. This is further
described in the case study of the chemistry lab (Sec. 4.5.1), and also part of the demonstrator for
the at-risk student use case (Sec. 6.1).

4.3 Student Performance Prediction

After explaining the prediction of at-risk students in greater detail, we will now shift our attention to
the prediction of students’ performance. Here. the objective is to predict a student’s performance
which is in most cases represented by a grade or a score. In a simplified setting, we might only want
to predict if a student solves a quiz correctly. Similar to the at-risk student prediction, student per-
formance prediction needs historical data which describes past behavior of students and includes
a corresponding label for their performance, e.g., the reached score or grade of the students. Al-
though it is mainly used in research on higher education at the moment, as described in Sec. 4.1.1,
there are different use cases where student performance prediction is valuable. For example, it can
help to identify students that will pass or fail an exam, or drop out of school due to low scores or
grades. This effects not only the students’ future, but it also leads to financial losses and a negative
reputation for schools, colleges, and universities. Needless to say that this holds regardless whether
these institutions are private or public. For example, the German education system is estimated to
lose every year about €2.2 billions due to university drop outs.*°.

Within the ENVISAGE project, we focus on high school students. Therefore, we decided to predict
the students’ membership in one of the four PISA 2012 proficiency classes. Typically, virtual labs track
scores for solving different problems. We can then map these scores from different tests and quizzes
to the PISA categories.

When looking at the simplified case of predicting whether a student passes an exam, we can
reduce the problem to a binary classification problem akin to the prediction of students at-risk. As
we have described above, prediction of at-risk students is also know as churn prediction in other
industries. Similarly, the simplified performance prediction can be seen as a “conversion prediction”.
Typically, a conversion prediction classifies users in two groups. One group contains all users for which
a particular conversion event has been observed. The second group contains only users without this
conversion event. Conversion prediction is often used in (mobile) games to predict if a certain stage
in the game will be reached by a player or if a player will buy in-game items. Other examples occur
in e-commerce settings where the cancellation of subscriptions can be predicted.

Bhttps://his-he.de/meta/presse/detail/news/studienabbruch-staat-vergeudet-jaehrlich-22-
milliarden-euro.html
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In this deliverable, the prediction of students’ performance is exemplified in a third case study
below (Sec. 4.5.3). The case study is based on data from the 3D Wind Energy Lab and the data was
collected during a recent pilot test at EA. Here, the tracked raw data was directly used without the
preprocessing infrastructure in Fig. 5. To generate labels for the machine learning algorithm, the
score system of the 3D Wind Energy Lab was aligned with the PISA 2012 proficiency classes. The case
study shows how these categories can be predicted successfully.

4.4 Quality Measures

predicted class
Yes No
Yes | True Positive (TP) | True Negative (TN)
No | False Positive (FP) | False Negative (FN)

actual class

Table 1: Confusion Matrix

To evaluate the predictions and measure the quality of a model, we mainly use two metrics. The
presented quality measures in this section describe the quality of the algorithms from a statistical
perspective. It should be mentioned that these metrics are not meant to be used by educators with-
out additional explanation. There are different measures that can be used to evaluate a model and
we will now explain accuracy and the f1-score. Depending on the dataset and algorithm, one has
to figure out what scoring method is better suited. Additionally, the output of the predictions can
be represented with help of a confusion matrix. An example of such a confusion matrix is shown in
Tbl. 1. Accuracy is the ratio of correctly predicted observations and the total number of observations:

TP +TN

accuracy = (2)
TP + FP + FN + TN

While this metric is quite intuitive, it should be used with caution. If the data is well balanced, i.e., all
classes occur with similar frequency, accuracy gives a good idea about the performance. However,
in the case of unbalanced datasets, where in the extreme case 99% of the students do not finish the
course, a trivial algorithm can achieve an accuracy of 99% by always returning a negative prediction.
Therefore, accuracy is not meaningful in this example. In particular, we would be interested in an
algorithm that can detect the 1% of students who finish the course and the metric should prefer
algorithms performing well on this task.

The f1-score is based on the precision and recall metrics. Precision, TP /(T P + F'P), shows how
many students are correctly identified at risk. Recall, TP /(T' P+ F N), calculates how many students
among all at-risk students were correctly identified as such. The fl-score is the harmonic mean of

precision and recall:
recall - precision

recall 4 precision

(3)

fl-score = 2 -

This score takes both, false positives and false negatives, into account. The fl-score should be used
in particular if the distribution of labels in the dataset is unbalanced. For the predictions of at-risk
students, the fl1-score is typically used as the classes are often not well balanced. In the case of the
chemistry lab, the data showed only a very small number of users who returned to the chemistry
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lab. Although the dataset in the churn prediction case study (Sec. 4.5.2) is more balanced, the data
providers and organizers of the associated challenge decided to use the fl1-score as well. The metrics
discussed so far, were defined for binary classification tasks. However, the prediction of students’
performance results in more than two classes. For such predictions, the accuracy and fl-score can
be extended easily to the multi-class setting.

4.5 Case Studies

The following three case studies are based on three different datasets. First, the GolLab Organic
Molecule Covalent Bonding virtual lab is used. This lab was already described in D1.1 [32]. It was
initially developed to prepare learners for chemistry exams. This settings is a good environment for a
continuous and repetitive usage of the lab. A recurring usage of the lab motivates the application of
the at-risk student prediction. Initially, the data of the Wind Energy Lab (cf. D1.4 [24]) was intended to
be used to forecast a student’s at-risk behavior as well. However, the Wind Energy Lab is constructed
in such a way that it is played only once. From a pedagogical perspective, repeating the Wind Energy
Lab does not make as much sense as the chemistry lab. However, this does not imply that deep
analytics or predictions cannot be used in the Wind Energy Lab in general. For the second case study,
we are using data from a Massive Multiplayer Online Roleplay Game (MMORPG), made available to
us in a churn prediction challenge at the Computational Intelligence in Games (CIG) conference in
2017.

While the first two case studies address the prediction of at-risk students, respectively churn
prediction, the third case study addresses the student performance prediction. Here, the data of the
3D Wind Energy Lab was used which also highlights that the 3D Wind Energy Lab is indeed well suited
for deep analytics. The case study shows how to predict a student’s affiliation in one of the four PISA
2012 proficiency classes.

As mentioned in Sec. 3.2, there is a 2D and a 3D version of the Wind Energy Lab. Besides the
graphic design, there are two major differences between both versions. While the 2D version fo-
cuses only on configuring the environmental parameters to generate enough energy, the 3D version
has significantly more features. There are different landscapes and the user journey is much more
diversified. Additionally, the learner gets a quiz at the end of a simulation. Due to those substantial
changes, the data tracking is more sophisticated as well which means a better data basis for machine
learning algorithms. For classifying a student in one of the PISA categories, the data of the 3D lab
was used.

4.5.1 Chemistry Lab

The dataset for the chemistry lab contains 2,079 events from 107 unique users with 21 different types
of events. This is roughly the available data in December 2017. To be more precise, the students
were observed from May 31st, 2017, until December 14th, 2017. In total, we had a count of 107
students which is a rather small amount of users for applying machine learning algorithms. Due
to this small user count, the case study qualifies as a feasibility study or prototype, which shows the
general capabilities of the at-risk student prediction on real education data. Over the entire timespan,
the students used the lab in 118 sessions. For a better understanding of the dataset, the statistics
in Fig. 7 give a brief overview on the event distribution. A deeper look at the distribution of the
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Figure 7: Event distribution in the chemistry lab dataset.

events shows that set.electron and add.bonding represent approximately 50% of all events. This
is due to the fact, that the chemistry lab is designed in such a way that both events are triggered
frequently by students in each iteration. To be more precise, these events are always triggered when
a student selects an electron and drops it to one of the bonding positions. As one can see in the
example in Fig. 8a, a correct solution requires 8 electron selections and 8 positioning events. When
a student now moves an electron to a wrong position as depicted in Fig. 8b, a rearrangement of the
electrons is necessary and even more events are triggered. Compared to the other tracked events,
the total number of events from these two types will always be much higher. Additionally to this
event information, locale information about the country and language is available for the students
as well. We observed that the most popular origin of the students was the US, and the most popular
language was English accordingly. This is a surprising insight about the students itself because the
lab was not promoted in the US. We currently assume that a large number of bots, for example from
search engines, visited the lab frequently. With this data at hand, the learning routine for a model
predicting at-risk students was started.

To learn a model, the students were observed for 7 days and the churn window had a timespan
of 28 days. With these parameters, we labeled 99 users as at-risk students, respectively churners,
because they only used the lab within the first seven days and did not return in the following 28
days. On the other hand, 8 students were labeled as frequent users or students returning to the lab.
However, this ratio was not surprising due to the fact that the lab was not in permanent use or part
of the curriculum in the last months.

After the model for the chemistry lab was learned, insights and quality estimates were accessible.
As a quality measure, the f1-score was used, as the dataset is not well balanced (cf. Sec. 4.4). Looking
at the statistics above, only 7.5% of the students return to the lab a second time. The model achieves
an fl-score of 0.96 which is a very good result, as we will later see in comparison to the second case
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Figure 8: Electron selection for water (H,0) in the chemistry lab.

study in Sec. 4.5.2. One of the most helpful insights from the model is a list of the most important fea-
tures used for the prediction. The machine learning algorithm determined the following five features
based on custom events as most important:

®* remove.element
e task.finish

® remove.electron
e check.electrons
e start.lab

This list of features can support teachers for improvements of the lab design. For example, compared
to Fig. 7, where set.electrons was the most used event, this event does not appear in the list of
the most important events. This underlines the power of machine learning algorithms which are
capable of finding important events that do not solely rely on the highest frequency but instead
on the discriminative power. Similarly, the event remove.element only represents 2% of the total
events but the algorithm identified it as an important event in the case of predicting at-risk students.
Such insights are easily accessible and can now be interpreted from a pedagogical point of view for
further measures to improve the lab. The results from this feasibility study show that the system is
capable of predicting at-risk students. The next case study will additionally show that the ENVISAGE
platform can also handle millions of events and scales to Big Data settings.

4.5.2 Blade & Soul

As pointed out in the state-of-the-art section, all machine learning approaches require a dataset
that allows to build features. For the ENVISAGE project, we were lacking a dataset from the virtual
labs containing thousands of students with millions of events. Due to this problem, we looked for a
dataset which has a high similarity to educational apps but is larger in size than the dataset from the
chemistry lab. One great solution to the problem was participating in the game data mining com-
petition as part of IEEE’s CIG 2017. NCSOFT, one the world’s largest game studios for MMORPGs,
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provided a dataset with telemetric user data from their highly successful Blade & Soul (BnS). The
training dataset had about 175 million events from 4,000 players. There were two test datasets con-
taining an additional 3,000 players each. While the players in the training data were observed over
40 days, the players in the test datasets had an observation time of 56 days. While the chemistry lab
in Sec. 4.5.1 had only 21 different events, we were able to extract about 80 different event types and
75 event properties from the BnS data. Tbl. 2 summarizes the BnS data.

Dataset Time Period Weeks | Number of Gamers
Training 2016/07/27 - 2016/09/21 6 4,000
Test Set 1 | 2016/07/27 - 2016/09/21 8 3,000
Test Set 2 | 2016/12/14 - 2017/02/08 8 3,000

Table 2: Blade & Soul trainings and test data.

In contrast to the virtual lab data, the first step was analyzing the data and transferring it to the EN-
VISAGE format. The data provided by NCSOFT differs substantially form the virtual lab data which is
directly tracked through the GTM tracking integration. The BnS data also contains more event types
and properties which allowed us to build new kinds of features. For example, social interactions
within the game were given in the dataset. While recency and frequency matter a lot in predicting
at-risk students or churn in general, social interactions were a new kind of information which we did
not have in the virtual labs. We found it particularly interesting to engineer social features because
this also connects to the social presence as described in [11], which is also used by Moodle for their
at-risk student prediction. Similar to the pedagogical perspective in virtual labs, certain game char-
acteristics have to be taken into account when designing features for games. For that reason, the
feature engineering process was done in an iterative fashion. This includes discussions about fea-
tures and the game concept, and checking the importance of new features. Therefore, we tried to
mainly make use of algorithms that provide information about feature importance. Nevertheless,
we did not limit ourselves to such algorithms and also tested ANNs. One should note that many of
the newly built features are also well suited for educational settings. Similar to the chemistry lab,
the features described in Sec. 4.2.1 were also used for the churn prediction of the BnS players.

The CIG challenge was a great testbed to validate if the churn prediction or at-risk student pre-
diction can be used on large datasets and to show that the algorithms are capable of producing
meaningful output in an additional setting. In the end, the GIO platform was ranked among the top
five results in the competition with 13 results submitted in total. As an additional outcome, the par-
ticipants were asked to contribute to a joint paper about the results and used methods within the
CIG challenge. This paper is currently under submission and we refer to [19] for more details. GIO,
representing the ENVISAGE consortium, participated in this publication and described its work on
churn prediction.

The results provided further insights that will help to improve future work on the at-risk student
prediction. One observation was that the algorithm did not heavily weight features based on the
social network within BnS. Regarding the social presence, one could assume that social features
should have a stronger impact and are very important from the pedagogical point of view. The social
graph that was created for BnS had about 32,000 players. However, we only had information about
connections within the network for 4,000 players. This data leads to an incomplete and very sparse
graph which is rather uncommon. For further work on social features, a complete social network
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Figure 9: Feature importance for churner in Blade & Soul.

would be necessary. We can transfer this observation to the educational setting as an important
insight. If one wants to take collaboration among students into account, the complete social network
needs to be tracked within the virtual lab.

After learning a model based on the data described above, one can again analyze the importance
of different features. Fig. 9 gives the relative importance of the features used in the BnS case study
grouped by different types. Here, “Frequency” represents features that count events. “Recency”-
features measure the time since a particular event has occurred or the time between two events.
“Amount” groups features which depend on values attached to events. For example, the amount of
virtual money spent. Lastly, features in the “Tendency” group indicate an increasing or decreasing
level of engagement based on curve fitting. As described above, the BnS dataset provides a rich set
of events which allowed us to create a large amount of features. Many of these features can also be
used by the prediction of at-risk students. For example, the social features that represent interactions
with other players or the frequency-domain feature that represents regular recurring usage.

While the fl-score in the chemistry lab case study was very high (0.96), we were only able to
reach an fl-score of 0.58 in the BnS case study. However, one should also not that the winner of the
CIG data mining competition reached an fl-score of 0.62. This highlights that the problem is quite
difficult and huge improvements in the f1-score cannot be achieved easily but instead require a lot
of effort on feature engineering and algorithmic design.

Besides the differences in the two datasets, i.e., chemistry lab and BnS, we were able to use a
large intersection of features for both case studies and run the data through the same pipeline as
depicted in Fig. 5. By doing so, we were able to validate the performance and capabilities of the
infrastructure, resulting in predictions for the chemistry lab and the BnS dataset. On the one hand,
we could show that we are able to learn an at-risk student model and on the other hand, we are
able to solve a very similar task at a much larger scale. This underlines not only that the pipeline
for predicting at-risk students is fully functional but it also shows with respect to the results of the
CIG challenge that the work of the ENVISAGE project is highly competitive. The work on research
and development in the past months shows to be compatible with other research domains and is
applicable in interdisciplinary settings. As described at the beginning of the section on supervised
learning, the two case studies also highlight the similarities between educational data from virtual
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Figure 10: Event distribution of the Wind Energy Lab dataset.

labs and behavioral data from games.

4.5.3 3D Wind Energy Lab

During the pilot execution at EA in January 2018, 78 students used the 3D version of the Wind Energy
Lab. The infrastructure was able to track 16,277 events in total over on three days. This included 21
unique event types. Additionally, 918,409 events with game . state information were tracked. For a
better understanding of the dataset, Fig. 10 gives an overview about the event distribution. Similar
to Fig. 7 in Sec. 4.5.1, Fig. 10 shows the relative usage of each event. In the 3D Wind Energy Lab,
the event enable.turbine is used most frequently with roughly 23%. Similar to the observations in
the chemistry lab, this indicates that the lab concentrates on a particular aspect and triggering the
associated event is central to the usage of the entire lab.

The application of deep analytics at the 3D Wind Energy Lab?° comes in the form of supervised
learning and in particular, ANNs. ANNs are chosen because of their wide adoption in modern machine
learning applications, their supreme performance in supervised learning tasks and their capacity to
approximate any given function with high accuracy (a qualitative feature widely known as universal
approximation).

Given the different nature and increased complexity of the 3D version of the Wind Energy Lab
and the overall aim of educators (D1.1 [32]) to predict the travel path (or learn ability performance)
of learners, we devised the following supervised learning approach. The ANN we employ considers
the following input vector:

e The game level where the learning exercise takes place, split by map/area (e.g., mountains)
and map pointer (sub-area within the map). Each of these variables (map/area and subarea)

Dhttp://160.40.51.48/games/energy
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Figure 11: An example histogram of scores at the 3D Wind Energy Lab.

are identified by an integer ID which is transformed for the input vector as one-hot encoding.
The subvector of inputs for the game level is thus, for example: 0,0,0,1,0,0,0,0,0,0,0,1,0,0 (the
first five digits are for the map, which has an ID of 2, and the last 9 digits are for the map pointer,
which has an ID of 3).

* The power, cost, and area coverage of the chosen turbine to be used in this game level and for
the purposes of this exercise. These 3 values are normalized between 0 and 1, via min-max
normalization considering all currently authored turbine values in the 3D Wind Energy Lab.
The subvector of inputs for the chosen turbine is thus, for example: 0.417, 0.974, 0.75.

Based on the above input the ANN outputs (attempts to predict) the 4 PISA categories of student
performance based on the score metric as described in D2.4 [12]. As a reminder, the score repre-
sents a mastery index metric, which is ad-hoc designed by expert educators and designers of the
Wind Energy Lab. The score metric is based on a combination of features on the simulation itself and
a multiple-choice answer post-simulation. The student’s score may vary between 1 (lowest possible
performance) and 10 (highest possible performance). Fig. 11 illustrates an example of a score dis-
tribution (illustrated as a histogram of scores) at the 3D Wind Energy Lab. The 4 PISA categories are
derived as follows and define the 4 outputs the ANN predicts:

e |lI: Reflective/communicative — Score: 8, 9 and 10
¢ |I: Advanced — Score: 5, 6, 7

e |: Beginner — Score: 2, 3,4

e <I: No problem solver — Score: 0, 1

The ANN may use a varying number of architectures depending on the data size available. The
most promising results have been achieved with architectures of one (or none) hidden layer consist-
ing of few neurons (see Fig. 12). All neurons of the ANNs in the final demonstrator of ENVISAGE em-
ploy a logistic function. The ANNs are trained on the dataset available (as described earlier) through
standard backpropagation.
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Figure 12: The ANN approach adopted for predicting the level of the learner’s competence (PISA score
distribution) at the 3D Wind Energy Lab. The ANN maps in-game features to the score distribution (4
score classes according to the PISA 2012 classification).

The cluster membership distribution as it is obtained from the ANN (<I to Ill) distribution is re-
ported back through the analytics service to the visualization front-end. An educator that completes
a new virtual lab using the 3D authoring tool is presented with this visual analytics information at
the end of her design. The pie chart shown below in Fig 13 displays the predicted PISA classification
distribution (ANN output) given the choices the teacher made during the authoring process (ANN
input).

The implementations used to experimentally realize the supervised models described in this doc-
ument can be found at the following URL:

https://github.com/Envisage-H2020/Analytics-Server
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I 11: Reflective Il: Advanced I I: Beginner
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Figure 13: Similarly to the 2D Wind Energy Lab deep analytics solution, the four PISA clusters (four
ANN outputs) are depicted as a pie chart in the visual analytics front end of the 3D Wind Energy Lab
of the authoring tool. For more details about the visual analytics service please refer to D2.4 [12].
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5 Adaptation of Learning Material

The previous section described how supervised learning can be used to identify at-risk students.
However, identifying such students is one thing. Recovering these students and keeping them en-
gaged is far more difficult. Students leaving a virtual lab may have various reasons. One reason might
be that either too little or too much is demanded from the students. In this case, we can try to adapt
the content in such a way that it better fits the needs of the students.

5.1 State-of-the-Art

When looking at state-of-the-art approaches, we differentiate here again between academic ap-
proaches and companies applying similar ideas in the industry. Research has been investigating the
adaptation of learning material or personalized content in general a lot earlier before companies have
started to integrate such approaches into their products. As in the previous examples and within the
entire ENVISAGE project, it makes sense to first have a look at the development in games and then
compare it to the state-of-the-art in education.

5.1.1 Academic Research

Although there exist different angles for content adaptation in games, one of the common approaches
is to adapt the difficulty in games. The seminal work by Hunicke and Chapman from 2004 [17] de-
scribes the Hamlet system for adjusting the difficulty dynamically in Valve’s Half Life. Hamlet ana-
lyzes player behavior and adjusts the games accordingly to control the game difficulty. There are
also more recent papers such as the work by Xue et al. from 2017 [36]. Xue et al. try to optimize a
player’s engagement throughout the entire game by using probabilistic graphs in level-based games
by Electronic Arts. While the work summarized so far, focuses on adjusting games in general, there is
also work on adjusting opponents in games. For example, Olana Missura’s dissertation [26] presents
an universal framework for games where players have interactions with opponents. Here, the skill
level of an opponent can be adapted to match a player’s skill.

When it comes to EDM, different techniques have been employed to personalize learning. For
example, collaborative filtering [8] has been used to to suggest learning material. Other approaches
go even one step further and try to design entire courses or study plans in a data-driven way [1].

5.1.2 Industrial Approaches

In gaming, companies such as deltaDNA offer consulting on game balancing?!. In many cases, this
is more oriented towards monetization than players’ performance or even skill improvement. For
example, a game developer may not be interested in causing a player to solve all levels as quickly as
possible because this player will then quickly move on to a new game — possibly from a different
developer or game studio.

When looking at the educational sector, this topic is often referred to as Adaptive Learning and
different aspects are covered by this term. While changing the content is also considered to be
adaptive learning, the implementation of different learning theories are also included. For example,

2 https://deltadna.com/consultancy/
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changing the repetitive behavior of a flash card system. Companies such as WiseLab offer systems
that allow to create content based on questions and answers. This learning material is then rolled
out to the learners in different forms (e.g., multiple choice questions) and on different platforms
(smartphone, tablet, etc.). In order to optimize the learning progress, the order of the questions are
adapted. D2L??, formerly Desire2Learn, is an example of a company where the content for students
can be adapted. They provide an LMS which offers rule-based content adaptation. One of their intro-
ductory videos?? describes well how triggers can be set to personalize the learning experience. For
example, when the system detects that students struggle to complete a test, supporting content can
be provided only to those students. Other LMSs’ like SABA?4, and Know-How!?® also offer support
to define learning pathways based on thresholds. Another example is Teach to One by New Class-
rooms*® which promises personalized learning for math. Teach to One partners with schools directly
and does not only focus on digital learning material but also replaces the core curriculum of a class
by creating individual content for each student.

Other companies go beyond rule-based systems and employ machine learning for educational
scenarios. For example, TrueShelf?’ offers an adaptive learning platform that lets students learn
mathematical concepts by helping them to solve math problems and real-world puzzles that get pro-
gressively harder as their skills develop. Their Al-powered platform identifies students’ strengths and
weaknesses, and personalizes content accordingly. Adaptemy?® is another example of a company us-
ing an algorithmic approach to personalize the learning experience. Adaptemy’s platform does not
only provide a recommendation engine that takes the type of content into account but also tries to
support learners by estimating their proficiency level and personalizing content accordingly.

5.2 Dynamic Difficulty Adjustment

As we have discussed already, students have different behaviors and show varying performance on
learnings tasks. Therefore, we should also adapt the learning material to their needs. We should
avoid to demand too much from a student but we should also pay attention to the learner not being
bored. In general, we should begin with finding the best approach to teach content to an entire group
or class. Afterwards, we can try to find a good pace for smaller subgroups of students, e.g. the high
performing students. Ultimately, we are looking for a system that adapts the content for each student
individually. Before we can adapt the content, we need to assess the performance of a student on
the learning task, exercise, or challenge. At the same time, we also need to know the difficulty of a
given task, in order to adapt the course material accordingly. We describe different approaches in
the next section.
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= Future Scenario1 <

Five years have passed since the establishment of your
wind farm.The power consumption of the village is lower
than initially planned due to most of its residents left. What
do you consider to be the most appropriate option from the
list below?

Keep the wind farm and sell the excess of power generated by
connecting the wind farm with the main electricity grid

Figure 14: Multiple choice question in the 3D Wind Energy Lab as part of the grading.

5.2.1 Assessing Performance and Measuring Difficulty

Assessing the performance of a student is not always obvious and can be done in different ways.
Deliverable D1.1 [32] already described how time-on-task is an important indicator in learning an-
alytics. It was also discussed that time-on-task can be related to a student’s learning performance
or achievements. We have seen this connection in Sec. 3 too when we clustered students using
archetypal analysis. In some cases, time-on-task can measure the difficulty of an exercise as well.
For example, if students typically do not require much time for a task, one can consider it to be
easier. However, this indicator does not always measure the difficulty as students may also give the
wrong answer after only little time because they did not give the exercise enough thought. If we have
exercises where we ask students for an answer, we would rather judge the difficulty of an exercise
by the total number of correct answers for each exercise, or the average grade of that exercise. For
example in the 3D Wind Energy Lab, students have to answers questions which are part of a scoring
(see Fig. 14 for an example). The results are used to estimate the student’s PISA proficiency level.

If we cannot easily judge the quality of an answer or the learning task, we can also consider to
explicitly ask the students to rate the previous task. This could be a setting where we would need
a teacher to rate every answer afterwards. For example would be, when a solution requires a free
text. Here, it is not possible to immediately assess the quality of a solution. In larger settings like

2https://www.d21. com

Bhttps://www.d21.com/resources/videos/personalize-learning-experience-release-conditions-
intelligent-agents/

https://www.saba.com

Bhttps://en.knowhow.de/

Zhttps://www.newclassrooms.org

2"https://trueshelf.com/

Bhttps://www.adaptemy.com

Page 37



Elgoedle.io

2 3
Modelling Churn
Difficulty Prediction
Learners’
Feedback . | 1
X A A
Telemetric Data L) . ]
Data Processing .
e |7 > v
N <mimrmimidn 5 Z
!_ ________________ Providing l<. d Generating
Strategies Strategies

Figure 15: Infrastructure for content adaptation and dynamic difficulty adjustment.

MOOQOCs, it may even be completely impossible to rate each answer in an acceptable time frame.
After the completion of an exercise, we can ask the students to rate the previous exercise as “easy”,
“medium”, or “difficult”. Of course, other rating schemes are also possible. Fig. 15 shows the entire
process how the ENVISAGE project realizes content adaptation within the GIO infrastructure. The
figure also highlights how the learner’s feedback is acquired and processed (Fig. 15 (1)).

Having either a grade or explicit feedback from the learner, we can correlate this feedback with
metrics such as time-on-task to estimate the perceived level of difficulty for students based on tele-
metric behavior. In some cases, the difficulty does not correlate with a single behavior but instead
several features have to be taken into account. Having feedback and behavioral data at hand, we can
use this data to build a machine learning model that takes as input the tracked data and the grading
or perceived difficulty of a student as labels (Fig. 15 (2)). Based on the behavioral data, the learned
model predicts how difficult a new task is for a student or predicts the estimated performance of a
student on a new task in advance. The case study on the 3D Wind Energy Lab in Sec. 4.5.3 also gave
an example how a machine learning model can be trained to predict students’ performance. This
approach has several advantages:

e By doing so, we can learn general behavior that correlates with more or less difficult tasks and
exercises.

e We can add new tasks and exercises in the future, and use our model to get an idea of the
difficulty of each new one.

e We get rid of the requirement to ask the learner for explicit feedback. These request for feed-
back may annoy the learner and cost time.

Depending on the amount of users, we do not even have to ask each learner to rate each tasks.
Instead, we can generalize from a smaller number of students and we do not have to bother each
learner. Again, this is in particular interesting when looking at MOOCs with thousands of learners.
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5.2.2 Designing Learning Strategies

After measuring the difficulty of an exercise and building a model to judge different exercises auto-
matically, the third step is to design different learning strategies (Fig. 15 (4)). Here, a learning strategy
can have a variety of different forms. For example, in the case of the Wind Energy Lab, a strategy may
be an initial setting of the environment. Certain parameter configurations make the problem easier
for the students because they have to do fewer changes in order to generate the proper amount of
energy orincome. In the chemistry labs, the strategies may look different. For example, the Molecule
Construction Lab? asks students to build molecules. In its original form, the student picks a molecule
from a given list, solves the current task, and proceeds with the next molecule. One can also think of
a version of this lab where the students cannot pick the molecules themselves but instead the order
is given by the lab, i.e., by the teacher. Here, different strategies can order the molecules differently.
For example, from easy to hard, or vice versa. We have implemented this version as a use case in
Sec. 5.3.1.

5.2.3 Automated Strategy Design: Genetic Algorithms

The examples of the previous section require expert knowledge from the teacher to define different
strategies. In some cases, the space of all possible strategies is way too large, to manually define and
test all strategies. In such settings, machine learning algorithms can be used to define new strategies
automatically. In particular, we have started to look into Genetic Algorithms to create new strategies.

Genetic algorithms allow to automatically construct new strategies based on existing ones. In-
spired by the process of natural selection, genetic algorithms find solutions to search problems in
an iterative fashion. Typically, genetic algorithms start by generating a few random solutions. In the
current setting, we prefer to have an educator generating initial seed solutions because the educa-
tor typically has a good intuition how a “good” strategy may look like. In each iteration, the genetic
algorithms pick a few existing strategies from the pool of all available solutions to construct a new
generation. Strategies that already perform well, are more likely to be selected to construct the next
generation. The performance of a strategy is evaluated based on a fitness-function. In our setting, the
fitness-function can be the average performance achieved by the students who learned according to
a strategy. The construction of a new generation is based on simple permutations and modifications
of the current generation. Afterwards, the new generation is then evaluated again based on the
fitness-function. This process continues until a quality threshold or a maximum number of iterations
has been reached.

However, in the case of educational settings, this approach comes with additional constraints and
challenges. Here, we have to be very careful with random modifications. The ethical requirements do
not allow us to test strategies completely at random because students may suffer from bad random
strategies. For example, think of a strategy that chooses all parameters to be a the most difficult
setting. To a genetic algorithm this may look like a total valid strategy but a teacher would never
pick it manually. Although the results would quickly indicate that this strategy is not desirable, our
ethical obligations do not allow us to test such a strategy. Furthermore, the fitness-function cannot
be evaluated easily in this setting, as we first have to find students to evaluate the new generation

Phttp://www.envisage-h2020.eu/games/chemistry/lab_molecule_ionic_covelant_bonding/
Molecule_IonicCovelantBonding.html
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on. Additionally, we have to make sure that the difference in quality is significant and not just a
probabilistic artifact. For the latter issue, we describe appropriate tests in the next section.

While genetic algorithms can easily generate hundreds or thousands of strategies, we also need a
sufficient amount of students to validate the quality of each strategy. For that reason, school settings
may be less adequate for this approach but MOOCs show a lot potential for this automated process.
The next section will describe in detail how strategies can be compared and tested.

5.2.4 A/B and Multivariate Testing for Learning Strategies

If we have multiple strategies at hand, we want to compare those strategies. As we have described
above, the performance of a single strategy is typically the average score over a group of students.
For that reason, we have to assert that the difference in performance of two strategies is statistically
significant and not only due to some extreme outliers. E.g., a few students achieving extremely good
results by cheating. If we have two strategies at hand, we can compare them via A/B-Testing [20].
Here, it does not matter how a strategy was constructed by genetic algorithms or manually by a
human. A/B-testing allows us to pick the more promising alternative of two strategies.

Running an A/B testing experiment on two strategies amounts to a statistical significance test.
Typically, we assume a significance level of 95%. This means that one can be 95% confident that the
winning strategy is really superior. Nevertheless, there is still a 5% chance that the result is only due
to a random chance.

Depending on the nature of our experiment, different tests needs to be used. For example, when
the performance is measured by the number of students that pass a test, we have a binomial dis-
tribution and should be using a Chi-square test. In other cases, where the performance indicator
is normally distributed, a t-test is what we are looking for. The performance data may be normally
distributed in the case of timings for a particular task. However, in a proper setting, we first need
to validate the distribution of the data. In other cases, for example when we count the number of
correct answers, the data is strictly speaking not normally distributed but may be Poisson distributed.
Nevertheless, it is also known that the normal distribution is a limit of the Poisson distribution for
large mean values. Still, other tests such as the Wilcoxon-Mann-Whitney test are more suitable in
such cases.

We often have more than two strategies that we want to compare. The most obvious thing to do,
is performing pairwise tests. However, this approach will increase the likelihood of false positives. As
described above, there is always a 5% chance of the winning strategy being inferior when assuming
a significance level of 95%. Now, doing several pairwise tests increases this chance. For that reason,
there exist other approaches to compare multiple outcomes such as Analysis of Variance (ANOVA)
F-tests.

In general, A/B testing comes with some additional disadvantages. For example, we need to
specify the number of students in advance who will have to learn following the different strategies.
This may have the undesirable effect that the inferior strategy is used on many students who suffer
from lower quality teaching. For that reason, we will explain Multi-Armed Bandits in the next section,
which avoid this disadvantage.
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5.2.5 Multi-Armed Bandits for Optimization

Instead of using pairwise tests or other multivariate testing frameworks, Multi-Armed Bandits (MABs)
also allow us to compare several strategies at the same time and also provide a mechanism to iter-
atively pick the best performing strategy among all available ones. MABs are inspired by gamble
machines in casinos, i.e., the arms of the bandits. This setting assumes that there are multiple slot
machines in a row with random rewards. The player has to decide, which machine to play in order
to maximize the reward.

We can now view each learning strategy as a “one-armed bandit” and the reward is the per-
formance of a student. We want to find the strategy that maximizes the performance for as many
students as possible. If the reward of each strategy was known, the task was trivial. Without this
knowledge, we have to try different strategies and track the rewards. A very simple approach would
be to choose the strategy with the current best expected reward. However, this yields in the “ex-
ploitation vs exploration” dilemma. Some strategies that we have not tested yet, may yield even
better results, or some strategies may just look bad after just a few initial tries due to random ef-
fects.

The goal of a bandit algorithm is now to find an approach that plays the optimal strategy exponen-
tially more often than any other strategy. One instance of an algorithm that solves the multi-armed
bandit problem, is the Upper Confidence Bound (UCB) algorithm [3]. We will not give full technical
details here, however, the algorithm calculates a score for each strategy that trades off exploitation
and exploration in each iteration. Depending on this score, the next strategy is picked. Another
popular alternative to UCB is Thompson sampling [7]. Thompson sampling achieves state-of-the-art
results while being vary easy to implement.

In our setting, we do not calculate the score for each student, i.e., in every single iteration, but
change the distribution over all strategies frequently. l.e., we begin with a distribution where all
strategies are distributed uniformly and then adapt this distribution as we gain more insights on
which strategies perform well. By constantly changing the distribution, we avoid the problem from
A/B testing where we have to determine a fixed number of trials per strategy in advance. Therefore,
there will be a lot fewer students that receive a suboptimal strategy in many cases.

5.2.6 Personalization of Strategies

The MAB approach to find an optimal strategy has one disadvantage when talking about personal-
ization of learning material and virtual labs: it tries to find an optimal strategy across all students,
i.e., it does not find strategies for different groups of students. However, it is very likely that not all
strategies are equally well suited for all students. For example, some students may require a slower
pace at the beginning than others.

For that reason, one future extension of this approach is to segment students into different groups
and to find optimal strategies for the different groups. One grouping of the students could follow the
PISA levels of proficiency. This approach has also been propose in D1.4 [24], Sec. 2.1.3.

Another approach could use the unsupervised methods presented in D3.1 [16], Sec 5.1, where
students were automatically clustered into groups based on their behavior. Other approaches could
first use a prediction of at-risk behavior and group the students depending on their at-risk likelihood.
However, here one has to be careful. The classifier could also detect well performing students as
potential churners, as they have already learned successfully and are in danger of leaving as the
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demand is too little for them. For that reason, one has to carefully craft the adaptation of the content.

Eventually the vision is to have segments of size n = 1, i.e., every student gets an individual
learning strategy. Taking this even one step further, we can use Reinforcement Learning to learn a
model of an agent representing a teacher that dynamically adapts the content for each student on a
finer level.

5.2.7 Closing the Loop: Reinforcement Learning

Before describing how Reinforcement Learning can be used to learn a model of a teacher, let us
denote that the multi-armed bandit problem can be seen as one of the most simple reinforcement
learning problems or a precursor of reinforcement learning. After each pull of an arm, the reinforce-
ment learning algorithm tries to find the optimal next action that maximizes the rewards. l.e., pulling
the same arm again or a different one. In the context of reinforcement learning, one refers to a pol-
icy. By using a method called policy gradients, a policy for picking actions is learned. Currently, it is
very popular to use ANNs and Deep Learning within the policy gradients approach.

An interesting possibility of reinforcement learning is to learn a model, or an agent, that simulates
a teacher. Previously, we defined entire strategies for a virtual lab in advance. For example, in the
case of the chemistry lab, we defined all actions in advance. E.g., in one strategy molecule A would
always follow molecule B and in another strategy this would possibly happen vice versa. However,
personalizing the entire learning experience would not define the next molecule in advance. Instead,
the student would solve one challenge and the teacher would then pick the next one matching the
current level of proficiency of the student. l.e., an action is the change in course or leaning material,
or adjustments to the environment of a virtual lab. For the chemistry lab, this would amount to learn-
ing a policy that picks the next molecule based on the previous molecules and the behavior of the
student. Here, the reward is the behavior or performance of the student. In deliverable D1.3 [33],
the ideas and advantages of active learning are further motivated, in particular from a pedagogical
point of view. Reinforcement learning can be used as a technology to improve and advance the ap-
proaches to active learning. Lastly, one should note that this setting distinguishes from supervised
learning as described above, as we do not know in advance how the next challenge affects the learn-
ing behavior of the student. Instead, the student has to solve upcoming challenges and based on the
performance, we learn if this was a good design of learning and course material.

This approach has not been implemented yet and is left for future work. The approach also comes
with several challenges. We need a large set of students and evaluations so that we can learn a reli-
able model. The feedback from the students does not necessarily come immediately. For example,
we may design a virtual lab with several sub-tasks. However, the students’ performance is only eval-
uated once at the end of the lab. Such a setting, for example, is present in the 3D Wind Energy
Lab. Additionally, this approach demands much higher computational power from the infrastruc-
ture. Whenever the student is evaluated, the model needs to make the next training iteration and
has to update its model. Similar to the MAB approach, one can also collect evaluations in batches,
which however then only approximates the optimal training procedure.
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Figure 16: The original chemistry lab containing the default dropdown.

5.3 Case Studies

We will now present two different case studies that exemplify the usage of dynamic content adap-
tation. We will begin by presenting the integration of content adaptation in a chemistry lab. This is
followed by a case study produced in cooperation with one of GIO’s customers who operates a highly
successful mobile quiz game.

5.3.1 Chemistry Lab

One use case for difficulty adjustment or content adaptation is the Organic Molecule Covalent Bond-
ing virtual lab. As shown in Fig. 16, in its current form, the student can pick a molecule from a
dropdown. After this selection, the student has to answer different questions with respect to this
molecule and solve associated tasks. After all tasks have been solved, the student can pick the next
molecule. More information about the 2D Chemistry Labs can be found in deliverable D1.1 [32],
Sec. 6 and the lab is still available online3°.

We have now modified the lab in such a way that the order in which to solve molecules is deter-
mined by the teacher®l. The source code also be found in ENVISAGE’s GitHub-repository32. Each of

Ohttp://www.envisage-h2020.eu/games/chemistry/lab_molecule_ionic_covelant_bonding/
Molecule_TonicCovelantBonding.html

3https://envisage.goedle.io/dda/examples/chemlab/Molecule_IonicCovelantBonding.html

2https://github.com/Envisage-H2020/1ab_molecule_ionic_covelant_bonding/tree/gio/content_
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Figure 17: The new chemistry lab where a molecule is picked based on a strategy obtained from the
ENVISAGE API.

such orderings is what we considered a learning strategy in the description of the approach in the
text above. The teacher now defines different strategies in the authoring tool and once a student
starts the lab, a random strategy is assigned by querying the ENVISAGE API. By doing so, teachers
can test if students stay longer engaged if easy molecules are followed by difficult ones. Or, if a good
ordering should contain more or fewer difficult molecules because an ordering may contain the same
molecules more than once. Accordingly, the adapted chemistry lab looks as depicted in Fig. 17.

This implementation has only been made available shortly before the submission of the deliver-
able. For that reason, we do not have enough data available to measure the impact of a possible
adaptation and we cannot say yet which strategy works best. However, we are aiming at integrat-
ing this content adaptation into the next pilot study, in order to obtain more behavioral data from
students and feedback from teachers. While the dynamic content adaptation is currently only inte-
grated in the 2D version of the lab, we are also working on integrating the same mechanism into the
3D version of the chemistry lab, as well as the Wind Energy Lab.

Right now, the student will always receive a new strategy when the virtual lab is loaded. How-
ever, in the future one could also consider storing the current strategy as long as not all molecules
of a strategy have been solved. In that case, we would also require a skip button, so that too diffi-
cult molecules can be skipped and students do not leave due to insurmountable obstacles. Tracking
the usage of the skip button would also be an interesting behavioral datapoint. Its analysis could

adaptation/
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Figure 18: Correlation between time to solve a level and the player feedback regarding the difficulty.

additionally support the design of new strategies. If we proceed with this approach, we can also
implement more sophisticated approaches to assign a follow-up strategy. E.g., if students perform
well, they will receive a more difficult strategy afterwards.

After a sufficient number of students have used the different strategies, we can start to evaluate
the different strategies based on various performance indicators. For example, which strategy lead
to more correctly solved molecules? Which strategy had students engaged for the longest amount of
time? Similar to the case study for at-risk student prediction, the implementation for the chemistry
lab is at a prototype stage and there was only limited data available as of February 2018. There-
fore, we now provide another case study in the gaming sector where the same system was used to
dynamically adapt the difficulty of a mobile quiz app.

5.3.2 Mobile quiz Game

One of GIO’s customers runs a successful mobile quiz game. This game is divided in hundreds of levels
and with the approach described in Sec. 5.2, we helped the quiz game to find an improved ordering of
their content. Opposed to educational apps, their KPIs may be different but the technical approach
remains very similar. The results presented here, were first published on GIO’s blog in November
2017,

From the surface it was not obvious which levels in the quiz game were more or less difficult, as
players could skip levels by using jokers. Therefore, we needed to measure the perceived level of
difficulty by the players, before we could analyze the relationship between the customer’s KPIs and
level difficulty. For that purpose, GIO’s infrastructure supports the tracking of player feedback. After
the completion of a level, the app simply asked the player to score the previous level. In a simple
setting, one can just ask the player to rate the level as “easy”, “medium”, or “difficult”. This data is
then used to calculate a score for each level.

However, one does not want to ask every single player to rate every single challenge as this will

Bhttp://blog.goedle.io/2017/11/29/increase-ad-revenue-by-74-with-difficulty-adjustment/
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Figure 19: An example strategy that increases and decreases the difficulty in a smooth manner to
diversify the user experience.

annoy the user and possibly lead to churn. For that reason, we analyzed the data in detail and found
out that the player feedback correlated very well with the time it took to solve a level. Such an
observation is not rare and can be found in educational scenarios as well. For example, we have
seen in Sec. 3.2 as well that time-on-task is a good indicator of performance and learnability. Fig. 18
shows data from more than 2,000 different levels. In total, 750,000 level completions were taken into
account from roughly 60,000 players.

Once we have a function to estimate the difficulty for all levels which only depends on behavioral
user data, such as time-on-task, we can get a better understanding of how the user journey looks like
in terms of the level difficulty. We can now test different strategies and measure their impact on the
KPIs or use Multi-Armed Bandits to find the best strategy directly. The result of each test also gives
new ideas on designing additional strategies. One example of a strategy could be the one depicted
in Fig. 19. The strategy in Fig. 19 was designed in such a way that the level difficulty increases with
every level for a certain number of levels before it then decreases again for the same number of
levels. Users who want to be challenged right away might find such a strategy more appealing than
the initial one. We can test dozens, hundreds, or even thousands of such strategies depending on
the number of players available.

In (mobile) games, revenue is typically the most important KPI. By testing various different strate-
gies, we were able to improve ad revenue for the mobile game mentioned above by 50% after 7 days
and 74% after 14 days compared to the initial baseline. One should mention that this was all possi-
ble by only operating on the macro level and we have not started to group users into segments yet.
As we have seen, measuring and analyzing the difficulty level has several benefits and applications
within education sector and beyond. It helps to optimize the retention or monetization in mobile
games but can also be used to optimize other KPIs depending on the nature of the app or students’
performance in virtual labs.
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6 Demo

We will now describe two demonstrators that include the prediction of at-risk students and the con-
tent adaptation from the sections above. We will begin with the prediction of at-risk students and
then describe how the content adaptation is managed from within the authoring tool. Most of the
functionalities shown below are accessible through the authoring tool at:

http://160.40.50.238/envisage/wpunity-main/

To login, a test account has been created with the username “author” and the password “review-
erenvisag”.

6.1 Prediction of At-Risk Students

To demonstrate the training of a model for the prediction of at-risk students, we have prepared a
web-service where raw tracking data can be uploaded. This data is then analyzed and preprocessed
to be used for the model learning. If the target app already uses the ENVISAGE infrastructure to
track behavioral data, the ENVISAGE API can be used to download raw data for specific days. We also
provide a helper script to directly download raw data for an entire time span and to merge multiple
days into a single file. This script can be obtained from ENVISAGE’s GitHub-repository®*. The final
dataset has to be a JavaScript Object Notation with Padding (JSONP) file. The JSONP file contains
one JavaScript Object Notation (JSON) dictionary per line. The dictionaries require the following
mandatory fields to be used in the demonstrator:

app_key lIdentifier of the virtual lab
user_id Unique identifier of a learner
event Event which was triggered by the learner

ts Unix timestamp that indicates when the event was triggered

A more detailed description of the fields can be found in D2.1 [13], Sec. 4.1. D2.1 also contains a
description about the data types and which additional fields can be used. The following code snippet
represents a single dictionary of the JSONP file, i.e., a single line:

{
"user_id”: ”"learner_1", ”"ts”: 1516095542,

"app_key”: "1”, "event”: "answer.question”

6.1.1 Data Upload View

Once the data is in the correct format and has sufficient size, it can be uploaded to the ENVISAGE
backend to invoke the demonstrator. Currently, the demonstrator supports JSONP files which can be
optionally compressed via GNU zip. If the data is compressed, the file name should end with .gz.
The URL for the data upload is as follows:

3https://github.com/Envisage-H2020/Tools/blob/master/utility_scripts/merge_api_files.py
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Figure 20: Screenshot of the data upload for the prediction of at-risk students.

https://envisage.goedle.io/at-risk/upload.htm

Fig. 20 shows the upload screen. On pressing the submit button, the data is first uploaded to GIO’s
servers. The data is then checked for the correct format and afterwards a new process for learning a
model for the prediction of at-risk students is started.

6.1.2 Intermediate View

After the dataset has been uploaded, the user gets an experiment id and a link pointing to a result
page. This step is depicted in Fig. 21. In the background, the data has to pass the entire process
pipeline which was shown in Fig. 5. If users want to check results now, they can click the link. Other-
wise, they should save the experiment id for checking the results later. Depending on the size of the
dataset, results will be available sooner or later.

6.1.3 Results View

With the link from the intermediate page, one can access the result page. Due to the complex process
pipeline, the page might not be ready yet. If this happens, one will only receive limited information
and has to update the result page a few minutes later. This depends on the number of events and
students in the dataset. If one did not click the link after the upload immediately but saved the
returned experiment id (exp_id), one can also obtain the results via the following URL:

https://envisage.goedle.io/at-risk/index.htm?exp_id=<exp_id>

Once the results are ready, one can obtain different descriptive statistics about the dataset, e.g., the
number of events and students, and information about the model for the at-risk student prediction,
e.g., quality of the learned model and important features. An example screenshot of the result page
is shown in Fig. 22. The results can also be accessed directly from the authoring tool. After the login,
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Figure 21: Screenshot after the data upload showing the experiment id which identifies the model
being learned in the meantime.

one has to select an existing project. Within the project, one has to select a scene and in the next
view, the at-risk student prediction appears in the menu. In summary, the results page contains the
following information:

Number of Unique Events The count of unique events in the dataset. This number corresponds to
the different types of events, e.g., add . bonding.

Number of Events This is the number of events which was uploaded from all users in the dataset.
Number of Students This is the count of students in the dataset.

Number of Churned Students The total number of students that were labeled as at-risk students in
the dataset.

Timespan The time interval from the first tracked data point to the last tracked data point in the
dataset.

Number of Observation Days The number of days a user is observed before making the at-risk pre-
diction (cf. Sec. 6).

Churn Window The churn window used in the experiment (cf. Fig. 6).

Number of Sessions The total number of sessions in the dataset. Deliverable D2.1 [13] explained
how sessions are calculated.

F1-Score The fl-score obtained by the model in a 5-fold cross validation (cf. Fig. 4.4 for details on
evaluating machine learning algorithms).

Top Countries A list of up to five countries that were observed most often in the dataset.
Top Languages A list of up to five languages that were observed most often in the dataset.

Top Features Up to five features which have the greatest impact from a statistical point of view that
lead to an at-risk behavior.
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Figure 22: Result page of the at-risk student prediction.
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6.1.4 Future Extensions

Right now, the insights into the at-risk behavior of students are somewhat limited and the model
cannot be used easily to predict behavior of new students. In the future, we plan to improve on both
of these issues.

Regarding the insights, we envision an algorithm that is capable of extracting additional and easy
to digest insights from the model. l.e., rules or examples why students are, or become, at-risk. This
should go beyond the single dimension that we present right now. For example, instead of just pro-
viding the information that a particular event correlates with at-risk behavior, we want to present
combinations of multiple events and their characteristics. E.g., students with a high number of event
A but a low average of event value B tend to have an increased at-risk behavior. When using the
learned models for predictions, we also want to make sure that the quality of the model is suffi-
cient. To get a better understanding of the model quality, tools such as ROC-curves [10] or confusion
matrices [34] can support teachers as well.

There are different options to make the predictions of the model available. A straightforward
approach would be to allow the user, i.e., game developer or educator, to also upload an additional
dataset with the most recent students for which predictions are supposed to be made. These stu-
dents would not be used for training but instead those students would be evaluated by the algorithm.
The prediction for each student could be written to a result file. E.g., if one wants to use data from
the last two years for training but only needs predictions for the current class which is using the lab.
Another approach would be to automatically detect which students in the dataset are new and do
not qualify as training instances yet. These students could be removed from the training dataset and
instead be used to make a predictions. Again, a result file could be provided with predictions on
those users.

Students at-risk in the next 2 weeks
Continue | Uncertain Stop
45% 25%

Table 3: Traffic light system for at-risk students.

One of the main problems, when it comes to interpreting future behavior, is an easy to read rep-
resentation of the predictions. Without further knowledge and a concrete use case, understanding
future behavior is often hard to grasp. Therefore, a traffic light system could help the teachers to
directly see how the behavior is distributed among the students. We have already had great success
in the past with traffic light based visualizations in marketing settings. An exemplary visualization is
depicted in Tbl. 3. The next step for a teacher is to adjust a virtual lab based on insights gained from
the learned models. For example, if a feature like reading the manual or answering questions leads
to a reduced at-risk propensity. This closes the loop and nicely connects to the content adaptation
in the next section.

6.2 Content Adaptation

We will now describe the demonstrator of the content adaptation module. Similar to the demon-
strator of the prediction of at-risk students, we will explain different screens that are used within the
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Figure 23: Authoring tool showing all available strategies for a virtual lab.

entire process. All screens can also be accessed directly from the authoring tool. After the login, one
has to select an existing project. Within the project, one has to select a scene and in the next view,
the dynamic content adaptation appears in the menu under “DDA”.

6.2.1 List of Strategies

The first screenshot from the authoring tool in Fig. 23 shows a list of all available strategies. This view
shows all strategies with basic information, such as the current counter, i.e., the number of times this
strategy has been allocated to students, a maximum value which defines the limit of tries for each
strategy, and a weight that defines the probability of this strategy being returned. In many cases, a
lab has a large variety of strategies and showing only the active ones is helpful. For that reason, one
can remove the inactive ones from the view by clicking the checkbox next to “Active”. Clicking this
checkbox leaves the user with only the currently active strategies.

6.2.2 Add a Strategy

The view shown in Fig. 24 allows to add a new strategy to the set of available strategies. It only
requires a new name for the strategy and its description in valid JSON. Here, one has to be careful
to enter JSON that is compatible with the particular virtual lab. In the case of the chemistry lab, an
example strategy could look as follows:
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Figure 24: Adding a new strategy for a virtual lab from within the authoring tool.
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IIHZOII’ lIHCIIl’ IIHZOII' IIKBrlI
]

This strategy begins with water (H,0), continues with hydrogen chloride (H C'l), repeats water again,
and finishes with potassium bromide (K Br). While entering JSON is quite technical and not every
teacher may be used to that notation, it has the advantage that it gives a lot flexibility to the dynamic
content adaptation. In the future, a developer of a virtual lab may provide a small tool that helps the
teachers to generate proper JSON. These tools could be integrated in the authoring tool as well for
each different type of virtual lab.

6.2.3 Test a Strategy

After a new strategy has been added to a virtual lab, it needs to be activated and tested. By setting
up a test, the strategy is activated and an upper limit of tries is set. The screen in Fig. 25 shows
how a test for a strategy is started. For new strategies, an initial number is set that determines how
many students will see the strategy. For already tested strategies, the number can be increased if the
maximum has been reached.
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6.2.4 Future Views

There is a number of views that are currently work in progress and will be released in the near future.
This includes but is not limited to:

Edit View This view allows to edit basic properties of a strategy such as the maximum number of
trials or the current weight. It is important to note that a change of the weight triggers an
update of the other strategies as well so that the probabilities add up to 100%.

Auto Redistribution The “Edit View” will allow to manually change the weights of the strategies.
However, it is often more desirable to have the MABs re-adjust the weights automatically ac-
cording to the performance.

Deactivate a Strategy Stops a current test and deactivates a strategy.

Performance View This view compares the performance of different strategies for a specific time-
frame, e.g., the last month.

We have now seen how the demonstrator currently supports different types of machine learning
algorithms. The outlook in the next section describes in greater detail how these different models
and predictions can be combined in the future.

Page 55



7 Outlook and Conclusion

As we have described in the previous sections, multiple deep analytics algorithms are operational
by now. We have already applied them to different virtual labs and the evaluation of the results is
still going on. Not every algorithm makes sense to be integrated into every virtual lab. For example,
the design of the Wind Energy Lab does not support the usage of the prediction of at-risk students.
Students may use the lab once to understand the physics of wind energy but are not necessarily
encouraged to use the lab multiple times. On the other hand, the at-risk student predictions is tech-
nically ready to be used in the 3D versions of the chemistry labs but there is not always sufficient
data available yet to learn a model for each lab. For that reason, we are planning to finish the inte-
gration of the predictions into all labs, once enough data was gathered. We currently assume that
the next pilot phase will generated a batch of data at a reasonable scale to observe at-risk behavior
of students in the chemistry labs. Nevertheless, we have also shown with the help of game data that
the algorithms and the entire platform is capable of generating positive impact on a large scale and
in business relevant use cases.

We have not started yet to implement the reinforcement learning for content adaptation in small
steps as presented in Sec. 5. Here, one action in the algorithm amounts to adapting the content.
The reward of this action is measured by students solving a task or exercise. The implementation
of this approach in an educational setting requires a lot data and we should validate the simpler ap-
proaches based on A/B testing or Multi-armed bandits first. Once we have satisfying results from
those approaches, we are at a good starting point to implement the more sophisticated reinforce-
ment learning approaches. Realizing the multi-armed bandit problem with help of reinforcement
learning might be a good approach to transit to the more advanced setting.

One avenue for future work that we consider to be equally interesting and potentially easier to
realize in the remaining amount of time is the combination of the prediction of at-risk students and
the content adaptation. As it has already been motivated, the two approaches can be connected
by first continuously making an at-risk prediction for students and adapting the course material ac-
cordingly. For example, when the at-risk prediction indicates a high likelihood of a student failing
or dropping out of a course because it is too challenging, the platform should intervene. There are
different options to support those students. For example, the content for these students should be
extended in such a way that it offers more supporting material that guides the students in solving
the problems. In contrast to this, if the system identifies students that only spend little time in the
virtual lab but easily solve all challenges, the content should be expanded in such a way that these
students are challenged as well.

There are some technical extension that we consider to be meaningful and important for the
infrastructure and platform. For example, a proper management of machine learning models for
different teachers and virtual labs is very important. With new data arriving, models need to be up-
dated and the algorithms need to decide which data to take into account. For example, we have
observed that the virtual labs change substantially over time. With educators revising labs, possibly
even based on the insights generated by the shallow and deep analytics, the structure of the data
tracking changes. By doing so, previous datasets may be become obsolete and the algorithms should
primarily learn form the most recent data. Nevertheless, the old datasets can be used to bootstrap
the algorithms to learn more quickly. This entire process should be organized and implemented in
such a way that educators can be informed about the current quality of the data and the models.
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Teachers can even be guided to run certain experiments with the students to generate the next iter-
ation of data without harming the quality of teaching. Such approaches are often referred to as active
learning within machine learning. l.e., the algorithms request specific training examples to improve
the quality of the model. Similar to A/B testing and genetic algorithm in Sec. 5, we also have to be
careful when the algorithms suggest changes. All changes need to be compliant with the teacher’s
point of view and human intuition.

Let us briefly summarize the contributions and findings in the deliverable at hand. Besides provid-
ing an up-to-date overview on the Artificial Intelligence in Education community, our contributions
focused on the implementation of deep analytics and the evaluation of the algorithms in six different
case studies. We have shown how to use unsupervised clustering to group students based on their
behavior in Sec. 3. We compared two different clustering algorithms, namely k-means and archety-
pal analysis. After examining the results, we concluded that archetypal analysis is better suited for
clustering of students in the 2D Wind Energy Lab. We continued by using supervised learning algo-
rithms to predict at-risk students and the performance of students in Sec. 4. We added three case
studies to validate these approaches by not only using data from virtual labs but also a large scale
dataset from an MMORPG. In Sec. 5 it was described how content can be adapted dynamically in
virtual labs. We showed how to extend a chemistry lab to integrate a simple content adaptation and
further motivated this approach by demonstrating that this approach was previously used in a mobile
quiz game with great success. As this deliverable is of type “Demonstrator”’, we showed in Sec. 6 in
detail how the deep analytics is integrated into the ENVISAGE authoring tool and gave references to
the corresponding source code if applicable.

While we have presented several algorithms in this deliverable and its predecessors, Al in ed-
ucation and deep analytics for virtual labs is still at a basic level. Although we can borrow many
technologies from the gaming industry and rely on algorithms that have been analyzed for decades,
the educational setting comes with its own challenges. For example, ethical obligations of teaching
restrict the possible tests of learning strategies and require a more careful approach. Additionally,
privacy regulations are justifiably more restrictive when it comes to school education. Nevertheless,
the possible impact of Al in education is huge and the possibilities of personalized and active learning
outweigh the challenges.
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