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Abstract
The iniƟal work on deep analyƟcs in ENVISAGE was introduced in D3.1 with the focus on unsuper-
vised methods and approaches used in game analyƟcs. D3.2 now presents revised requirements
and updated algorithms tailored towards educaƟonal seƫngs. We provide an extended overview
of “EducaƟonal Data Mining” and “AI in EducaƟon”, and we explain how exisƟng approaches fit the
ENVISAGE project. We proceed by presenƟng unsupervised and supervised learning algorithms for
deep analyƟcs within the educaƟonal context. The work on unsupervised learning extends D3.1 and
presents the clustering of students in the 2D Wind Energy Lab as an applicaƟon. As examples for su-
pervised learning, we introduce the predicƟon of at-risk students and proficiency levels of students.
AŌer idenƟfying at-risk or low-performing students, the next step is to intervene and to help more
students to succeed. Here, one approach is to adapt coursematerial to beƩer fit the students’ needs.
Therefore, we present approaches for dynamic content adaptaƟon and explain how virtual labs can
be adapted to personalize learning. Before presenƟng our conclusion, we show examples from the
ENVISAGE plaƞorm and demonstrate the current capabiliƟes of the deep analyƟcs components.
The informaƟon in this document reflects only the author’s views and the European Community is
not liable for any use that may bemade of the informaƟon contained therein. The informaƟon in this
document is provided as is and no guarantee or warranty is given that the informaƟon is fit for any
parƟcular purpose. The user thereof uses the informaƟon at its sole risk and liability.
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ExecuƟve Summary

The iniƟalwork onpredicƟve analyƟcs in the ENVISAGEprojectwas introduced in deliverableD3.1 [16]
with the main focus on unsupervised methods and approaches used in games and game analyƟcs.
Deliverable D3.2 now presents revised requirements and updated algorithms tailored towards edu-
caƟonal seƫngs but also tested on games. We extend the overview on exisƟng approaches in the
fields of “EducaƟonal Data Mining” and “AI in EducaƟon”, and we also explain how exisƟng methods
from other areas need to be adapted to fit the ENVISAGE seƫng.

We start by presenƟng revised unsupervised learning algorithms in Sec. 3 which directly extend
the work in D3.1 [16]. We also present a case study in Sec. 3.2 which gives results on using differ-
ent clustering algorithms on student data obtained from the 2D Wind Energy Lab. We proceed by
presenƟng supervised learning algorithms for deep analyƟcs within the educaƟonal context. Here,
we explain two different use cases where supervised learning can be used to personalize the user
experience in virtual labs. In parƟcular, we present a predicƟon of at-risk students and a predicƟon
of students’ performance within the Programme for InternaƟonal Student Assessment (PISA) 2012
framework for proficiency classes. We also explain the necessary data preprocessing and feature
engineering in detail. We do not only evaluate our algorithms on behavioral data from a chemistry
lab and the 3D Wind Energy lab, but we also apply our algorithms to player data from a well known
online game in order to validate the capabiliƟes on a larger scale.

AŌer idenƟfying students at-risk or students who are predicted to have a lower performance,
the next step is to intervene and to support those students to succeed. One possible approach is to
adapt course material dynamically to beƩer fit their needs. Therefore, we look at dynamic difficulty
adjustment in Sec. 5 and explain how course material can be adapted to fit different segments of
students. As an example, we use methods from staƟsƟcs andmachine learning, to adapt the content
in a chemistry lab. We explain in detail how the chemistry lab can be adapted to allow the educator
to define different learning strategies. We also describe different approaches that can be used to
test and validate different learning strategies to find the opƟmal strategy for a parƟcular lab. Since
the implementaƟon of the dynamic content adaptaƟon is sƟll on a prototype level for the chemistry
lab, we also provide a case study from one of GIO’s customers. This case study in Sec. 5.3.2 details
how dynamic difficulty adjustment can be used in quiz games to improve the user experience. Quiz
games can be related to educaƟonal seƫngs easily and we pave the way for addiƟonal experiments
in learning environments.

Before presenƟng our conclusion on the current efforts and moƟvaƟng future work, we show
examples from the ENVISAGE plaƞorm and demonstrate the current capabiliƟes of the deep analyƟcs
components. The descripƟon of the demonstrator highlights how different deep analyƟcs algorithms
are already integrated into the authoring tool and shows how all pieces from the ENVISAGE project
interact with each other.
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AbbreviaƟons and Acronyms

AI ArƟficial Intelligence

AIEd ArƟficial Intelligence in EducaƟon

ANN ArƟficial Neural Network

ANOVA Analysis of Variance

API ApplicaƟon Programming Interface

BnS Blade & Soul

CIG ComputaƟonal Intelligence in Games

DDA Dynamic Difficulty Adjustment

EDM EducaƟonal Data Mining

GDPR General Data ProtecƟon RegulaƟon

GPU Graphics Processing Unit

GTM Google Tag Manager

JSON JavaScript Object NotaƟon

JSONP JavaScript Object NotaƟon with Padding

KPI Key Performance Indicator

LMS Learning Management System

MAB MulƟ-Armed Bandit

MMORPG Massive MulƟplayer Online Roleplay Game

MOOC Massive Open Online Course

PII Personally IdenƟfiable InformaƟon

PISA Programme for InternaƟonal Student Assessment

SDK SoŌware Development Kit

UCB Upper Confidence Bound
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1 IntroducƟon

The goal of the ENVISAGE project is to improve virtual labs through a structured and data-driven pro-
cess. First, this requires data from the learners, i.e., the students of virtual labs. This data is then
analyzed and prepared to be used by educators. Next, an authoring tool is required that is capable
of adapƟng exisƟng virtual labs based on the insights from the data analysis. The deliverable at hand
focuses on the data analysis and insights that can be automaƟcally obtained from the data. While
work package 2, e.g., deliverables D2.2 [25] and D2.3 [15], were concerned with shallow analyƟcs,
this deliverable focuses on deep analyƟcs, i.e., using algorithms to analyze and understand behav-
ioral data from students automaƟcally. This deliverable describes the conƟnuaƟon of the work on
deep analyƟcs presented in deliverable D3.1 [16]. While D3.1 focused on unsupervised learning, the
deliverable at hand extends the deep analyƟcs part of the ENVISAGE project to addiƟonal types of
machine learning. AddiƟonally, this deliverable introduces approaches for content adaptaƟon, allow-
ing teachers to change the configuraƟon of a virtual lab in order to test different learning strategies
and to incorporate insights from the data analysis.

When talking about deep analyƟcs, it is important to disƟnguish between different types of ma-
chine learning. Among other characterisƟcs, machine learning differenƟates between unsupervised
and supervised learning to discover paƩerns in data. Unsupervised Learning does not require any
labeled data and can cluster students for example in different groups without knowing these groups
in advance. On the other hand, Supervised Learning requires annotated datasets in order to learn
a model. In classificaƟon tasks, these labels categorize students in previously known groups. For
example, one can build a dataset for training an algorithm with two labels by classifying students if
they passed an exam or failed. Besides unsupervised and supervised learning, another form of ma-
chine learning exists which is called Reinforcement Learning. Here, the algorithm learns from acƟons
and their rewards, i.e., there is not a gold set of annotated labels available in advance but a reward
funcƟon instead that scores different acƟons. Different use cases require different types of machine
learning and in this deliverable, we provide examples for each seƫng. For example, unsupervised
learning is used to cluster students into different groups depending on their learning behavior in
Sec. 3. Supervised learning is used to detect at-risk students and the learnedmodels provide insights
into the root causes of students losing interesƟng in a virtual lab in Sec. 4. Lastly, when designing
new strategies to personalize and improve learning, there is no knowledge in advance how these
new strategies perform. Here, and in the automaƟon of the enƟre process, different forms of rein-
forcement learning can be used as moƟvated in Sec. 5.

Deliverable D3.1 already covered unsupervised learning for educaƟonal purposes. For example,
it was described in Sec. 5 how k-means and archetypal clustering can be used to group students.
Here, we present first results on using those algorithms on virtual lab data. To be more precise,
the case study in Sec. 3.2 describes how data from the 2D Wind Energy Lab can be used to cluster
students. This highlights how the past months have been used to acƟvely transfer approaches from
the gaming industry to the educaƟon sector. As the case study shows as well, the algorithms are
equally applicable in educaƟon and result in interesƟng insights into the learner’s behavior.

We will proceed as follows. First, we will summarize the efforts of the communiƟes in ArƟficial
Intelligence (AI) and Machine Learning when it comes to applying these algorithms in educaƟon and
e-learning. Next, we will present the advancements of the unsupervised learning approaches as a
sequel to deliverable D3.1. This includes one case study on virtual lab data. In the following secƟon,
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we will describe in detail how supervised learning is used to predict at-risk students and students’
performance. This includes three case studies giving results on the algorithmic capabiliƟes. AŌer-
wards, our approach to dynamic content adaptaƟon is presented andwe also give two examples how
virtual labs can benefit from the adaptaƟon. Before giving an outlook on the next steps, we provide
the reader with an extensive descripƟon of the demonstrators and provide sufficient instrucƟons so
that the results can be tested and verified.
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2 AnalyƟcs and AI in EducaƟon

When reviewing ongoing research and available products for deep analyƟcs, different terminologies
can be observedwhichwere established over the past years. A few years ago, BigDatawas hyped and
in parƟcular companies were referring to this term. This wave set the expectaƟon that large amounts
of data would generate insights previously not available. There are plenty of books describing how
Big Data can help to improve learning in school and higher educaƟon. From the Big Data hype, two
research communiƟes evolved: EducaƟonal Data Mining (EDM) and Learning AnalyƟcs [29, 4]. In
D3.1 [16], the differences between EDMand Learning AnalyƟcswere discussed in detail. In a nutshell,
EDM is a more automated approach to gain informaƟon from educaƟonal datasets, and Learning
AnalyƟcs is a tool that helps (educaƟonal) analysts to interpret the data. In recent years, AI has
become more popular again and people start to rephrase technologies in terms of AI to possibly
reach a wider audience and to gain more tracƟon. For example, algorithms from data mining are
also oŌen applied in AI scenarios.

As D3.1 also menƟoned, the gaming industry is typically a few years ahead of other industries
and in parƟcular ahead of the educaƟon sector. AI and data-driven thinking is slowly becoming the
status quo [37]. A lot of service providers in themarket offer different technologies to personalize the
gaming experience. Among other companies, deltaDNA1 and OpƟmove2 offer services to enhance
games with help of AI and machine learning.

In contrast, there is a big gap in the usage of such technologies in the field of educaƟon. Mostly
former researchers are building plaƞorms and soŌware that is capable of closing this gap. It is also
important to disƟnguish between the markets in the United States and Europe. With the EU General
Data ProtecƟon RegulaƟon (GDPR), e.g., ArƟcle 22 (“Automated individual decision-making, includ-
ing profiling”), it will getmore challenging for European educaƟon insƟtuƟons to implement adapƟve
learningmechanism. TheGDPRwill establish high standardswhen it comes to data tracking and using
such data for personalizaƟon. It will be necessary to obtain the consent of a learner when mecha-
nisms are implemented that are applying automated decision-making based on personal informa-
Ɵon. Of course, when tracking children and teenagers in schools, this topic is even more sensiƟve
and parents’ consent is necessary to comply with privacy protecƟon standards.

VisiƟng important trade shows in e-learning and digital educaƟon also underlines that the educa-
Ɵon sector is oŌen inspired by technologies used in gaming. For example, Virtual Reality is certainly
aƩracƟng a lot of aƩenƟon in educaƟon, while the gaming industry has been pushing this technology
for several years by now3. AddiƟonally, learning apps in form of quizzes are also quite prominent. Of-
ten Learning Management Systems (LMSs) are extended to feature quiz apps to make learning more
mobile and provide another engagement opportunity with the course material.

Returning to the discussion about different terminologies, one will certainly noƟce that there is a
big overlap. For example, machine learning can be seen as a subfield of AI. Algorithms used in data
mining, such as clustering or classificaƟon, are certainly found in machine learning as well. However,
datamining also lends itself to Big Data and analyƟcs, as staƟsƟcal methods are used to detect trends
in data and to extract acƟonable insights. While analyƟcs typically sƟll involves a lot of human labor,
AI stands for an automated processing of data, offering insights that were not accessible to humans

1http://www.deltadna.com
2http://www.optimove.com
3http://blog.goedle.io/2018/02/01/trends-in-digital-education-at-learntec-2018/
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before, and predicƟng future behavior.
In 2016, Pearson and the UCL Knowledge Lab published the open idea report Intelligence Un-

leashed [4] which discussed the opportuniƟes and future development of ArƟficial Intelligence in Ed-
ucaƟon (AIEd). The report describes three kind of AIEd models. First, the pedagogical model which
represents the knowledge and experƟse of teaching. Second, the domain model which represents
the knowledge of the subject that is being taught. And third, the learner model which represents
the knowledge of the learner. Within the ENVISAGE project, there are intersecƟons with all of those
three models which is also highlighted by the composiƟon of the consorƟum. The report also de-
scribes two AIEd applicaƟons. First, predicƟon of at-risk students which is already used in schools
and universiƟes. Second, a model-based adapƟve tutor that has a content adaptaƟon module.

It should be clarified that the predicƟon of at-risk students is not available as an out-of-the-box
soluƟon. However, there are two service providers on the market which are acƟvely adverƟsing the
predicƟon of at-risk students. On the one hand, the open source LMS Moodle4 and on the other
hand the commercial company Blackboard5. The full adapƟve tutor as envisioned in [21] as an AIEd
applicaƟon is to the best of our knowledge not implemented in any products yet. The content adap-
taƟon process has similariƟes to the Dynamic Difficulty Adjustment (DDA) which is currently being
developed for content adaptaƟon in the ENVISAGE project. The main difference is that the content
adapƟon within ENVISAGE is a more generalized approach that adapts content based on behavioral
informaƟon, not only based on domain knowledge. Sec. 4 will show how predicƟon of at-risk stu-
dents is implemented and Sec. 5 explains how the content adaptaƟon works in a virtual lab.

2.1 Recap of the AIEd market

Beside Moodle and Blackboard, there are other companies focusing on building a bridge between
machine learning and educaƟon. A few successful examples are presented in the following. Mindojo6

and CENTURY7 are both plaƞorms that provide AIEd in general. There are also more specialized com-
panies, especially for subjects such as math, where a couple of companies are using AI for educaƟon.
One example is ScreenTime Learning8, an app that was released in December 2017 to prevent an
excessive usage of smartphones and tablets by children. A child gets a math task which then locks
the screen unƟl it is solved. ScreenTime Learning uses DDA to adjust the difficulty of the math tasks
for a child. AddiƟonal examples are the online courses by Trueshelf9 or beƩermarks10. Both offer
adapƟve learning in their courses which directly integrates in their learning material. Adaptemy11 of-
fers custom soluƟons for adapƟng educaƟonal content for learners. We will provide more examples
in the secƟons below for parƟcular use cases and applicaƟons.

4https://www.moodle.org
5https:/www.blackboard.com
6https://www.mindojo.com
7http://www.century.tech
8https://www.screentimelearning.com
9https://www.trueshelf.com

10https://www.bettermarks.com
11https://www.adaptemy.com
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2.2 RestricƟons in School Seƫngs

One has to be careful when it comes to privacy regarding the analysis of a learner’s behavior. Espe-
cially informaƟon about children are very sensiƟve. All analysis, methods, and soŌware presented,
make use of telemetric data but do not require personal informaƟon. By avoiding any kind of Person-
ally IdenƟfiable InformaƟon (PII) or demographic informaƟon, the privacy of children is respected.
In many cases, anonymous data is already sufficient to gain valuable insights that help the educators
to improve the quality of the course. AddiƟonally, insights on the level of groups of students can be
informaƟve without harming the privacy of individuals.
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Figure 1: A comparison between cluster locaƟons on the same dataset from a game when using
either k-means (indicated by K’s) or archetypal analysis (indicated by A’s).

3 Unsupervised Learning

Unsupervised learning was themain approach adopted for the 2DWind Energy Lab as presented and
detailed in D3.1 [16]. In this secƟon, we present the algorithms adopted and detail their applicaƟon
to the 2D Wind Energy Lab. A key goal of ENVISAGE is to understand how different students’ behav-
iors are indicaƟve of different groupings within, e.g., the whole student base or parƟcular classes. In
the terminology of EDM, this is a Structure Discovery problem, which is a well-known class of prob-
lems. For both, game analyƟcs and educaƟonal data analysis, this is typically addressed by applying
clustering methods, that parƟƟon observaƟons into groups. Two clustering algorithms have been
employed for the datasets collected from the virtual labs: k-means and archetypal analysis.

In brief, k-means allows for idenƟfying groups based on typical behavior whereas archetypal anal-
ysis, allows for idenƟfying groups based on extreme behavior. While both types of groupings may be
of interest to teachers adapƟng virtual labs to suit their needs, archetypal analysis turned out to be a
far more useful approach to clustering as it manages to beƩer separate students within meaningful
classes as mapped to the PISA 2012 categorizaƟon. The next secƟon describes the final algorithm
used.

3.1 Archetypal Clustering and Analysis

While k-means and similar algorithms such as k-medoids focus on idenƟfying groups around average
behavior in the data, archetypal analysis is focused on idenƟfying extreme examples in the data. The
algorithm works by drawing the minimally possible convex hull around all the observed data points.
Using this hull, the algorithm searches for linear combinaƟons of the observed data points that min-
imize Eq. 1 to determine coefficients that allow the data to be represented by the archetypes [5]:
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Figure 2: k-means in the 2D Wind Energy Lab. The cluster labels assigned are as follows III: Reflec-
Ɵve/communicaƟve (class number 4); II: Advanced (class number 2); I: Beginner (class number 1);
<I: No problem solver (class number 3).

argmin
S,H

1

2
||X −XSH||2F (1)

ObservaƟons are then labeled according to their closeness to these archetypes, using a distance
funcƟon, much akin to the way observaƟons are labeled in k-means. When used in combinaƟon
with k-means, archetypal analysis provides a useful alternaƟve perspecƟve that allows the user to
see hypotheƟcal extreme examples. This can help the user understand the overall direcƟons of the
behavior that the players of a game or the students in a digital learning environment are exhibiƟng.
Fig. 1 shows a comparison of cluster centers found using k-means and archetypal analysis, respec-
Ɵvely, when applied to the same dataset of player acƟons in a game.

3.2 Case Study: 2D Wind Energy Lab

Fig. 2 and Fig. 3 show a comparison of cluster centers found using k-means and archetypal analysis
when applied to the same dataset of player acƟons in the 2D Wind Energy Lab. Both algorithms
consider the following shallow analyƟcs and tasks definiƟons (ad-hoc designed metrics) as described
in D2.4 [12].

Time-on-task This metric measures the Ɵme it took the students to reach correct power from a state
of being either under or over powered.

Correct power The amount of Ɵme the student has the wind simulaƟon correctly powered.

Over power The amount of Ɵme a student has the wind simulaƟon over-powered.
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Figure 3: Archetypal analysis in the 2DWind Energy Lab. The cluster labels assigned are as follows III:
ReflecƟve/communicaƟve (class number 2); II: Advanced (class number 1); I: Beginner (class number
4); <I: No problem solver (class number 3).

Under power The amount of Ɵme a student has the wind simulaƟon under-powered.

Based on the above in-lab on-task behaviors, learners are clustered into four typical groups (PISA
2012 classificaƟon; D1.1 [32]) by either method. In parƟcular, the four clusters are as follows:

• III: ReflecƟve/communicaƟve

• II: Advanced

• I: Beginner

• <I: No problem solver

The difference in the way the two algorithms operate is rather visible from Fig. 2 and Fig. 3. The
figures display the clusters as determined by the two algorithms and the data points within the four
feature planes, which are projected onto the two-dimensional figure via principal-component anal-
ysis. We use this case study example to demonstrate the advantages of archetypal analysis over
k-means in the task of automaƟcally clustering learners according to their performance in the 2D
Wind Energy Lab (PISA classificaƟon). As it is directly observable from Fig. 2, k-means places only
two learners who under-power theWind Energy Lab in their own category (category 3 in green color
or PISA class >I), since they are rather dissimilar from the rest of the group. In general, k-means tends
to place most students within the center of the hypersphere as this is the way the algorithm oper-
ates. In our parƟcular domain, most students perform alike and that results in crowded data points
for k-means to cluster. This shows coherence in the class, but does not show trends.
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Figure 4: The four PISA clusters depicted as a pie chart in the visual analyƟcs dashboard. For more
details about the visual analyƟcs service please refer to D2.4 [12].

In contrast, archetypal analysis, as displayed in Fig. 3, correctly idenƟfieswhich direcƟons learners
are veering in, and assigns a group of students to the “low-performing” category (category 3 in green
color or PISA class <I) and correctly idenƟfies studentsmoving toward the “high-performing” category
(category 2 in red color or PISA class III). It is important to note that archetypal analysis, in contrast to
k-means, is able to idenƟfy two groups of learners who (groups 3 and 4) underperformed in different
ways: the first is over-powering the wind energy whereas the laƩer is under-powering the lab.

Also noƟce in Fig. 3 that Ɵme-on-task is inversely related to correct power, whereas under/over-
powered is unrelated. In a nutshell, Fig. 3 illustrates that good students are faster than average/poor
students, but slow speed does not tell us what kind of errors a student would make. This example
dataset validates that Ɵme-on-task is a good indicator of performance and learnability. In parƟcular,
lower Ɵme-on-task predicts beƩer performance.

Given the above qualitaƟve characterisƟcs and benefits of archetypal analysis over k-means in
the Wind Energy Lab domain, we opted for the former approach for clustering learner performance
in virtual labs. The cluster membership (<I to III) distribuƟon is reported back through the analyƟcs
service to the visualizaƟon front-end. A depicƟon of the service is shown below in Fig. 4. The imple-
mentaƟons used to experimentally realize the unsupervised models described in this document can
be found at the following URL:

https://github.com/Envisage-H2020/Analytics-Server

It is important to note that the unsupervised learning approachwas adopted only for the 2DWind
Energy Lab and not for its 3D version given the substanƟal differences between the two labs. In the
supervised learning secƟon, we detail the deep analyƟcs approach employed for the 3DWind Energy
Lab (Sec. 4.5.3).
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4 Supervised Learning for EducaƟonal Scenarios

In deliverable D1.1 [32], it was discussed that staƟsƟcs from shallow analyƟcs like Ɵme-on-task can be
combined with deeper analyƟcs to provide insights to a student’s learning process. For example, an
at-risk student predicƟon supports the idenƟficaƟon of learners who are not going to conƟnue using
a virtual lab or having troubles following the course material. This leads to insights about students
where one knows in advance that a learner gets stuck or does not finish parts of the soluƟon. With
such a forecast of students’ behavior, it is possible to pro-acƟvely support the students by improv-
ing their achievements and success. Two examples for proacƟve acƟons are (human based) support
through blended learning or with (machine based) content adaptaƟon. The content adaptaƟon ap-
proach is described in Sec. 5. Another use case for supervised learning in educaƟon is predicƟng
students’ performance. To simplify the problem formulaƟon, one can map the scores of students to
the PISA 2012 categories. By doing so, each student gets a label based on the achieved score. Af-
terwards, one can learn a model that predicts which students fall in which PISA 2012 category based
on their behavior. In this secƟon, we describe those two use cases for supervised learning in greater
detail. Before doing so, we give an overview on current approaches in this area. We finalize this
secƟon by presenƟng three case studies that show first results on using the algorithms on real-world
data.

4.1 State-of-the-Art

At-risk student predicƟon is quite similar to churn predicƟon. In the gaming industry or telecommu-
nicaƟon industry, churn predicƟon has been applied for years, if not decades. This is originated by
the fact that retenƟon is one of the most important Key Performance Indicators (KPIs) in these ar-
eas. Also in the academic research, churn predicƟon has been analyzed for years, while predicƟon
of at-risk students in virtual labs is relaƟvely new. The at-risk student predicƟon has already found
its way in the industry, with companies offering it as a service. Performance predicƟon of students
is a research field that has not found its way into products like at-risk student predicƟons yet. But,
there are a lot of academic research projects which cover this topic. These focus mainly on higher
educaƟon though. The state-of-the-art secƟon gives an overview about churn predicƟon in other in-
dustries and the predicƟon of at-risk students in educaƟonal seƫngs. AddiƟonally, a brief overview
about the current academic research on performance predicƟon is provided.

4.1.1 Academic Research

Because of the strong similarity between learners’ behavior in virtual labs and players’ or customers’
behavior in games or apps, different resources were taken into account to develop predicƟons of
at-risk students. PredicƟng churn has a long history. For example, in 2000 Mozer et al. [27] already
publishedwork on churn predicƟon for a telecommunicaƟon carrier. Amore recent publicaƟon about
churn predicƟon in a seƫng more similar to virtual labs can be found in [14]. Here, player churn
in free-to-play mobile games was analyzed and predicted. The work in [14] also inspired the basic
features which were used in the following secƟons. AddiƟonal inspiraƟon for features, more focused
on educaƟonal data, can be found in the literature about community inquirymodels. This is also used
byMoodle in their module for predicƟon of at-risk students. Inspired by the work from Garrison et.
al [11], the features are based on three pillars: cogniƟve presence, social presence, and teacher
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presence. Also the work by Marks et al. [23] and Slavin et al. [31] describe how important Ɵme on
task is. This fact has also been acknowledged in previous deliverables within the ENVISAGE project
(cf. D1.1 [32] and D1.4 [24]).

In e-learning, the informaƟon about at-risk students is very important. Prior knowledge about
students possibly dropping out can be used to increase retenƟon by taking proacƟve measurements
to prevent the dropout from actually happening. In 2009, Lykourentzou et al. [22] applied machine
learning on data fromMassive Open Online Courses (MOOCs) to predict dropouts in online courses.
Kai et al. [18] used student interacƟon data from online courses to build predicƟon models. These
models predicted at-risk students and the future student registraƟon behavior for online courses.
The second use case is rather a conversion predicƟon, i.e., the predicƟon if a student will enroll for
a course in the future. A conversion predicƟon can also be used to predict if a student passes an
exam or not. In more advanced seƫngs, this can be extended to even predict a student’s score or
grade in an exam. Having such informaƟon at hand can further help to improve students’ success rate.
Imagine having a list of students available a fewweeks ahead of an exam that indicates which student
could benefit from addiƟonal help. Most of the research on this topic is done with higher educaƟon
insƟtuƟons or online courses. Along those lines, Al-Seleem et al. [2] build a model that predicts a
student’s grade based on their academic records. The work by bin Mat et. al [6] covers student
performance predicƟons in distance higher educaƟon. The authors also discuss the effecƟveness
of acƟve learning methodologies in predicƟng student’s behaviors. Shahiria et. al [28] present a
systemaƟcal review of the literature on predicƟng student’s behavior. This work covers approaches
on predicƟng a student’s performance and evaluates different algorithms.

4.1.2 Industrial Approaches

Moodle, one of the most frequently used open source LMS, has integrated an at-risk student predic-
Ɵon in their 2017 released version 3.412. The predicƟon of at-risk students is integrated in the core of
the soŌware. The results of the predicƟons are binary, i.e., either a student drops out of a course or
remains an acƟve member. Besides these results,Moodle offers opportuniƟes to reach out to at-risk
students to influence their behavior in a posiƟve way.

Amore business oriented applicaƟon is offered by Blackboard13 since 2016. The soluƟon is called
Blackboard Predict and is currently in a beta phase. It is planned to be released in Q1/Q2 2018.
Blackboard is a full service provider for digital educaƟon. This includes communicaƟon services for
different stakeholders (e.g., teacher, student, or parent) and an LMS among other soluƟons. Their
website provides a full catalog of products and services14. A deeper look at Blackboard Predict in
parƟcular shows interesƟng applicaƟons. Blackboard Predict consists of three parts:

• predicƟon

• visualizaƟon of results

• communicaƟon for engagement

12https://docs.moodle.org/dev/Moodle_3.4_release_notes
13http://blog.blackboard.com/introducing-blackboard-predict/
14https://www.blackboard.com
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Figure 5: The process pipeline for at-risk student predicƟons.

Blackboard describes in their blog that they are aiming at a shiŌ in perspecƟve andwant to focusmore
on behavioral informaƟon. Their argument is that there are no at-risk students in general, instead
students are classified as being at-risk of not finishing a task. This definiƟon does not only integrate
beƩer in an educaƟonal seƫng, it also points out the limitaƟons of predicƟons and frames the at-risk
predicƟon as a tool to improve soŌware-based learning. Moodle’s predicƟon of at-risk students and
Blackboard Predict have one thing in common, both approaches heavily rely on meaningful features.
In turn, the availability of these features strongly depends on a well implemented tracking and clean
datasets with behavioral data about students.

Moodle offers a predefined set of features and provides an internal tracking. This allows to create
a model which can be applied within the Moodle LMS but at the cost of flexibility. One should also
note that it is only possible to make at-risk predicƟons on a course-level at the moment. However, in
Moodle one can add custom predicƟons and the enƟre predicƟon code is open source. While there
is an ApplicaƟon Programming Interface (API) for adding data and creaƟng new features, one should
not underesƟmate the necessary expert knowledge in machine learning and soŌware development
to make use of these features. In comparison toMoodle, Blackboard’s offerings are more focused on
consulƟng. For example, they help to idenƟfy and build features for custom predicƟons. One should
also highlight that Blackboard Predict is not limited to their own plaƞorm. They also offer soluƟons
forMoodle, for example at-risk predicƟons are part of X-Ray15which is Blackboard’s learning analyƟcs
suite forMoodle. Besides that, one can also integrate Blackboard Predict into custom soluƟons. They
support a customer from defining a predicƟon, over tracking and aggregaƟng the data, learning the
model, and lastly using the predicƟons from the model for proacƟve measures. In the next secƟon,
we will give more details on the at-risk student predicƟon model in ENVISAGE.
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Figure 6: The figures explains the observaƟon window and churn window used in building the
dataset.

4.2 PredicƟon of At-Risk Students

Similar approaches to an at-risk student predicƟon are also used in the gaming industry, as well as
for many other apps where retenƟon is a crucial KPI. In gaming, one typically refers to churn pre-
dicƟon and in human resources departments, people refer to the predicƟon of employee turnover.
Games and other industries provide many different approaches to keep players, users, or customers
engaged. These methods range from basic interacƟons, over automated reminders, to the enƟre
personalizaƟon of communicaƟon and the individualizaƟon of content.

While the gaming industry has been uƟlizing churn predicƟon for years, there are only a few
serviceswhich offer a predicƟon of at-risk students aswe have seen in the previous secƟon. While the
soluƟon to the predicƟonproblemmaybe technically similar, the surrounding condiƟons in educaƟon
differ significantly. The at-risk predicƟon tries to classify learners who will stop using a virtual lab, fail
an exam, or cancel an enƟre course or degree. In the following, we present a process pipeline for the
predicƟon of at-risk students developed for the ENVISAGE project. The pipeline is depicted in Fig. 5.

We now describe the different components for the at-risk student predicƟon. It starts with the
process of collecƟng or imporƟng the data, box 1 in Fig. 5. AŌerwards, the feature extracƟon process
is triggered (box 2). Following this, the data is preprocessed (box 3) for being used inmachine learning
algorithms. The resulƟng data is then used as input for different classificaƟon algorithms (box 4).
Lastly, the predicƟons are inferred based on the learned model (box 5). In Sec. 4.5.1 and 4.5.2, we
will present two case studies that make use of the ENVSIAGE pipeline. The first case study is based
on a virtual chemistry lab that was described in D1.1 [32] and the second case study is based on
gaming data which is in its nature very similar to a virtual lab. AddiƟonal gaming data was taken into
account, as the amount of data resulƟng from the virtual lab was limited at the point of wriƟng this
deliverable.

As we have previously described, being an at-risk student indicates a high likelihood of not com-
pleƟng a certain course, task, or stopping to learn. The predicƟon of at-risk students is based on su-
pervised learning algorithms. Supervised learningmeans that the algorithm requires labeled training
data. Therefore, historical data is needed. This means one needs data from the past that provides
informaƟon about students that canceled their ambiƟons to learn for a course or exercise.

15https://www.blackboard.com/education-analytics/xray-learning-analytics.html
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A possible labeling process looks like the one given in Fig. 6. Users are observed over a span of
two weeks in total. Assuming, one wants to predict the at-risk students aŌer one week, the “churn
window” amounts to seven days. Correspondingly, we refer the “observaƟon window” as the first
seven days of the total Ɵme span of two weeks. To construct labeled training instances, one uses
students’ data from the first week to construct features and checks if they are acƟve in the second
week to label them. Students who are not acƟve in the secondweek are labeled as “at-risk students”,
i.e., true. Those who are acƟve in the second week are labeled as false. This corresponds to the
binary classificaƟon which is used inMoodle as well. But, there is one piƞall regarding the PISA 2012
framework. On average, 10% of the learners have a high proficiency level. Some of these learners are
very likely to not return to the lab because they do not require as much learning Ɵme compared to
the average student. The algorithm now possibly idenƟfies such learners as at-risk students because
they are less likely to return. Adding addiƟonal learning content is not appropriate for them, as
they are already performing well. For that reason, one should take performance into account before
automaƟng decisions or making content adaptaƟons.

4.2.1 Data Import, Feature ExtracƟon, and Preprocessing

Before the feature extracƟon can begin, the data has to be imported and prepared for the extrac-
Ɵon process. Typically, data has to be aggregated on a user level and sorted chronologically. OŌen,
addiƟonal meta data is added to the user profiles from external sources. For example, resolving IP
addresses to locaƟons. The quality of the feature extracƟon depends on the number of events and
aƩributes, as well on a proper tracking which is the basis for obtaining the data. OŌen, data comes
from different plaƞorms and sources. For example, in the ENVISAGE project virtual lab data can be
received from a Google TagManager (GTM) integraƟon or from the ENVISAGE Unity SoŌware Devel-
opment Kit (SDK). The data format and tracking scheme, which applies to GTM and the Unity SDK, is
described in D2.1 [13]. Once the data has the appropriate format, the data aggregaƟon and augmen-
taƟon process is started. This process is also described in detail in D2.1 [13]. The case study about
at-risk students in Sec. 4.5.1 and the churn predicƟon case study in Sec. 4.5.2 are both depending on
this data aggregaƟon and data augmentaƟon process. The student performance predicƟon used the
raw data directly and applied an addiƟonal preprocessing for the feature extracƟon. This is described
in more detail in the case study in Sec. 4.5.3.

Features are the core of a machine learning model. They describe and represent the behavior
of a student. The algorithms use features and their weights to build a model. An example feature
is the count of a certain interacƟon. In the chemistry lab, this could be the informaƟon on how
oŌen a learner has added a bonding. Another feature could be the Ɵme between two sessions.
This so called “inter-session Ɵme” is typically averaged over all sessions. An increasing inter-session
Ɵme oŌen indicates at-risk behavior. If enough learners have been observed, we can learn a model
based on the features. The model can then classify if a learner is at risk of not coming back. The
model will internally represent certain rules for different behaviors. For example, if learners, who
are coming back frequently, have oŌen added a bonding, the feature indicaƟng the count of this
event will have a strong impact, when discriminaƟng those learners from at-risk students. A lot of
the features are inspired by the work in [14, 30]. Based on GIO’s plaƞorm, the ENVISAGE project has
a large toolbox of features at its disposal. For the educaƟonal seƫng, and based on the educaƟonal
relevant parameters proposed in D1.4 [24], we created addiƟonal features, which include:
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Ɵme-on-task How much Ɵme does a student need for a certain task?

Ɵme between tasks How much Ɵme has passed between two tasks?

current absence Ɵme How long has the student been absent from the virtual lab?

Other features, that are more general, can be grouped in different kinds of behavioral descripƟons:

basic acƟvity Measuring basic acƟvity such as the number of days a student has been acƟve or the
total number of sessions.

event counts CounƟng the number of Ɵmes an event or an event-idenƟfier combinaƟon occurs. E.g.,
the number of Ɵmes a user added an electron to a bonding in the chemistry lab.

event values MathemaƟcal operaƟons on event values, e.g., the sum of correctly answered ques-
Ɵons or the mean value of points scored.

curve fiƫng Curve fiƫng can be applied to Ɵme series data. Parameters, such as a posiƟve slope of
a inter-session Ɵme series, indicate an increasing moƟvaƟon in the virtual lab. More details on
this can be found in [14].

frequency Students’ acƟvity can be transformed from a Ɵme series to a frequency domain. This
allows to esƟmate the strongest recurring frequency of a student.

social These features can count the number of connecƟons within a social network of students16.
Other features indicate if a student is connected to other classmates that may be important
for the mutual learning progress.

4.2.2 ClassificaƟon Algorithms

There is a variety of classificaƟon algorithms that can be used for the predicƟon of at-risk students.
GIO’s plaƞormworks agnosƟc of parƟcular algorithms and chooses themost appropriate one for each
problem and dataset. We transferred this agnosƟc approach to the at-risk student predicƟon within
ENVSIAGE. Therefore, one the following algorithms is typically used within the system, depending on
the datasets and addiƟonal parameters:

• LogisƟc Regression

• Naive Bayes

• k-Nearest-Neighbors

• Decision Trees

• Random Forests

• Gradient Tree BoosƟng

16One should note that these kinds of features require virtual labs that allow social interacƟons.
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• ArƟficial Neural Networks

• Support Vector Machines

When tesƟng different algorithms for the predicƟon of at-risk students, we relied on the implemen-
taƟon of the algorithms in the scikit-learn17 Python library. For ArƟficial Neural Networks (ANNs), we
also used TensorFlow18. All ANNs ran on an Nvidia general purpose Graphics Processing Unit (GPU).

4.2.3 Choosing an Algorithm and Parameters

Every algorithm has strengths and weaknesses. On top of that, algorithms typically cannot be used
out of the box with default parameters. Therefore, we have to opƟmize the parameters first. This is
typically done with help of an automaƟc parameter opƟmizaƟon.

There are different kinds of parameter opƟmizaƟons. The simplest one is a brute-force grid
search. A grid search finds the best configuraƟon for an algorithm based on a given space of parame-
ters. In a nutshell, an algorithm has different parameters, e.g., a logisƟc regression can be configured
with an automaƟc normalizaƟon of the data, different opƟmizaƟon algorithms, various thresholds,
and opƟons. If onewants to validate if a parameter has impact on the result, one adds the parameter
to the search space of the grid search. Then, the algorithm is evaluated on every combinaƟon of the
passed parameters, i.e., on every instance in the search space. Typically, the evaluaƟon is done with
a cross validaƟon to get stable and reliable results. The cross validaƟon splits the training dataset into
k different folds. Each fold is a random subset of the data. Based on the folds, the data is parƟƟoned
into a training and test datasets. Typically, one fold is used for tesƟng and the remaining folds form
the training dataset. Depending on the dataset and classificaƟon problem, different scores are used
for the validaƟon. Accuracy and f1-score, as described in Sec. 4.4, are typical examples.

A basic grid search is very Ɵme consuming because all possible combinaƟons of a given param-
eter space need to be tested. A smarter and faster way to approximate the opƟmal parameters is a
Bayesian opƟmizaƟon, e.g., as described in [9]. Bayesian opƟmizaƟon does not test every item in the
enƟre search space but instead samples configuraƟons from the space and tries to search the space
in an intelligent way. This avoids tesƟng all configuraƟons of the search space and the approach tries
to avoid configuraƟons that are not promising. Naturally, this also introduces the risk of trapping into
a local opƟmum, i.e., not finding the best parameters available in the search space.

4.2.4 Fiƫng the Model and Making PredicƟons

Thewhole procedure of parameter opƟmizaƟon is done to obtain awell performingpredicƟonmodel.
AŌer the best parameters have been found, the model is trained with the winning parameters. The
whole process is done in the “Model Learning and Parameter OpƟmizaƟon” part of the infrastructure
(cf. box 4 in Fig. 5). AŌerwards, the model is available in the GIO infrastructure and can classify new
students (cf. box 5 in Fig. 5).

If one wants to know the probability of learners being at risk of not returning to a virtual lab,
GIO’s API can be queried for these learners. By default, these predicƟons are done in a batch-wise
fashion. Every night, learners acƟve within a given Ɵme frame are taken into account. These learners

17http://scikit-learn.org
18https://www.tensorflow.org
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are then classified based on their behavior. The result is a probability for each learner of returning
to a virtual lab. Through the API, one can obtain a list of user idenƟfiers and their at-risk probability.
By predicƟng the current likelihood of a student every day, we create an at-risk profile of students.
These profiles could support a teacher to respond if the probability increases over Ɵme for certain
students. Plaƞorms such as Moodle or Blackboard offer communicaƟon modules, allowing to in-
teract with students directly. For example, if the at-risk probability increases, the teacher is alerted
and encouraged to support the student. GIO’s plaƞorm already offers similar capabiliƟes for market-
ing purposes and is currently extending it to use cases within educaƟon. As discussed before, this
needs to respect more sensiƟve privacy regulaƟons and restricƟons. AddiƟonally, we have added
an demonstrator for historic data for the ENVISAGE project. One can upload historic raw data in the
format described in D2.1 [13] and get a first impression on what the model looks like. This is further
described in the case study of the chemistry lab (Sec. 4.5.1), and also part of the demonstrator for
the at-risk student use case (Sec. 6.1).

4.3 Student Performance PredicƟon

AŌer explaining the predicƟon of at-risk students in greater detail, we will now shiŌ our aƩenƟon to
the predicƟon of students’ performance. Here. the objecƟve is to predict a student’s performance
which is in most cases represented by a grade or a score. In a simplified seƫng, we might only want
to predict if a student solves a quiz correctly. Similar to the at-risk student predicƟon, student per-
formance predicƟon needs historical data which describes past behavior of students and includes
a corresponding label for their performance, e.g., the reached score or grade of the students. Al-
though it is mainly used in research on higher educaƟon at the moment, as described in Sec. 4.1.1,
there are different use cases where student performance predicƟon is valuable. For example, it can
help to idenƟfy students that will pass or fail an exam, or drop out of school due to low scores or
grades. This effects not only the students’ future, but it also leads to financial losses and a negaƟve
reputaƟon for schools, colleges, and universiƟes. Needless to say that this holds regardless whether
these insƟtuƟons are private or public. For example, the German educaƟon system is esƟmated to
lose every year about €2.2 billions due to university drop outs.19.

Within the ENVISAGE project, we focus on high school students. Therefore, we decided to predict
the students’membership in one of the four PISA 2012 proficiency classes. Typically, virtual labs track
scores for solving different problems. We can then map these scores from different tests and quizzes
to the PISA categories.

When looking at the simplified case of predicƟng whether a student passes an exam, we can
reduce the problem to a binary classificaƟon problem akin to the predicƟon of students at-risk. As
we have described above, predicƟon of at-risk students is also know as churn predicƟon in other
industries. Similarly, the simplified performance predicƟon can be seen as a “conversion predicƟon”.
Typically, a conversion predicƟon classifies users in two groups. One group contains all users forwhich
a parƟcular conversion event has been observed. The second group contains only users without this
conversion event. Conversion predicƟon is oŌen used in (mobile) games to predict if a certain stage
in the game will be reached by a player or if a player will buy in-game items. Other examples occur
in e-commerce seƫngs where the cancellaƟon of subscripƟons can be predicted.

19https://his-he.de/meta/presse/detail/news/studienabbruch-staat-vergeudet-jaehrlich-22-
milliarden-euro.html
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In this deliverable, the predicƟon of students’ performance is exemplified in a third case study
below (Sec. 4.5.3). The case study is based on data from the 3D Wind Energy Lab and the data was
collected during a recent pilot test at EA. Here, the tracked raw data was directly used without the
preprocessing infrastructure in Fig. 5. To generate labels for the machine learning algorithm, the
score system of the 3DWind Energy Lab was aligned with the PISA 2012 proficiency classes. The case
study shows how these categories can be predicted successfully.

4.4 Quality Measures

predicted class
Yes No

Yes True PosiƟve (TP) True NegaƟve (TN)
actual class

No False PosiƟve (FP) False NegaƟve (FN)

Table 1: Confusion Matrix

To evaluate the predicƟons and measure the quality of a model, we mainly use two metrics. The
presented quality measures in this secƟon describe the quality of the algorithms from a staƟsƟcal
perspecƟve. It should be menƟoned that these metrics are not meant to be used by educators with-
out addiƟonal explanaƟon. There are different measures that can be used to evaluate a model and
we will now explain accuracy and the f1-score. Depending on the dataset and algorithm, one has
to figure out what scoring method is beƩer suited. AddiƟonally, the output of the predicƟons can
be represented with help of a confusion matrix. An example of such a confusion matrix is shown in
Tbl. 1. Accuracy is the raƟo of correctly predicted observaƟons and the total number of observaƟons:

accuracy =
TP+ TN

TP+ FP+ FN+ TN
(2)

While this metric is quite intuiƟve, it should be used with cauƟon. If the data is well balanced, i.e., all
classes occur with similar frequency, accuracy gives a good idea about the performance. However,
in the case of unbalanced datasets, where in the extreme case 99% of the students do not finish the
course, a trivial algorithm can achieve an accuracy of 99% by always returning a negaƟve predicƟon.
Therefore, accuracy is not meaningful in this example. In parƟcular, we would be interested in an
algorithm that can detect the 1% of students who finish the course and the metric should prefer
algorithms performing well on this task.

The f1-score is based on the precision and recallmetrics. Precision, TP/(TP +FP ), shows how
many students are correctly idenƟfied at risk. Recall, TP/(TP+FN), calculates howmany students
among all at-risk students were correctly idenƟfied as such. The f1-score is the harmonic mean of
precision and recall:

f1-score = 2 · recall · precision
recall+ precision

(3)

This score takes both, false posiƟves and false negaƟves, into account. The f1-score should be used
in parƟcular if the distribuƟon of labels in the dataset is unbalanced. For the predicƟons of at-risk
students, the f1-score is typically used as the classes are oŌen not well balanced. In the case of the
chemistry lab, the data showed only a very small number of users who returned to the chemistry
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lab. Although the dataset in the churn predicƟon case study (Sec. 4.5.2) is more balanced, the data
providers and organizers of the associated challenge decided to use the f1-score as well. The metrics
discussed so far, were defined for binary classificaƟon tasks. However, the predicƟon of students’
performance results in more than two classes. For such predicƟons, the accuracy and f1-score can
be extended easily to the mulƟ-class seƫng.

4.5 Case Studies

The following three case studies are based on three different datasets. First, the GoLab Organic
Molecule Covalent Bonding virtual lab is used. This lab was already described in D1.1 [32]. It was
iniƟally developed to prepare learners for chemistry exams. This seƫngs is a good environment for a
conƟnuous and repeƟƟve usage of the lab. A recurring usage of the lab moƟvates the applicaƟon of
the at-risk student predicƟon. IniƟally, the data of theWind Energy Lab (cf. D1.4 [24]) was intended to
be used to forecast a student’s at-risk behavior as well. However, theWind Energy Lab is constructed
in such a way that it is played only once. From a pedagogical perspecƟve, repeaƟng theWind Energy
Lab does not make as much sense as the chemistry lab. However, this does not imply that deep
analyƟcs or predicƟons cannot be used in theWind Energy Lab in general. For the second case study,
we are using data from aMassive MulƟplayer Online Roleplay Game (MMORPG), made available to
us in a churn predicƟon challenge at the ComputaƟonal Intelligence in Games (CIG) conference in
2017.

While the first two case studies address the predicƟon of at-risk students, respecƟvely churn
predicƟon, the third case study addresses the student performance predicƟon. Here, the data of the
3DWind Energy Lab was usedwhich also highlights that the 3DWind Energy Lab is indeedwell suited
for deep analyƟcs. The case study shows how to predict a student’s affiliaƟon in one of the four PISA
2012 proficiency classes.

As menƟoned in Sec. 3.2, there is a 2D and a 3D version of the Wind Energy Lab. Besides the
graphic design, there are two major differences between both versions. While the 2D version fo-
cuses only on configuring the environmental parameters to generate enough energy, the 3D version
has significantly more features. There are different landscapes and the user journey is much more
diversified. AddiƟonally, the learner gets a quiz at the end of a simulaƟon. Due to those substanƟal
changes, the data tracking is more sophisƟcated as well which means a beƩer data basis for machine
learning algorithms. For classifying a student in one of the PISA categories, the data of the 3D lab
was used.

4.5.1 Chemistry Lab

The dataset for the chemistry lab contains 2,079 events from 107 unique users with 21 different types
of events. This is roughly the available data in December 2017. To be more precise, the students
were observed from May 31st, 2017, unƟl December 14th, 2017. In total, we had a count of 107
students which is a rather small amount of users for applying machine learning algorithms. Due
to this small user count, the case study qualifies as a feasibility study or prototype, which shows the
general capabiliƟes of the at-risk student predicƟon on real educaƟon data. Over the enƟre Ɵmespan,
the students used the lab in 118 sessions. For a beƩer understanding of the dataset, the staƟsƟcs
in Fig. 7 give a brief overview on the event distribuƟon. A deeper look at the distribuƟon of the
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Figure 7: Event distribuƟon in the chemistry lab dataset.

events shows that set.electron and add.bonding represent approximately 50% of all events. This
is due to the fact, that the chemistry lab is designed in such a way that both events are triggered
frequently by students in each iteraƟon. To be more precise, these events are always triggered when
a student selects an electron and drops it to one of the bonding posiƟons. As one can see in the
example in Fig. 8a, a correct soluƟon requires 8 electron selecƟons and 8 posiƟoning events. When
a student now moves an electron to a wrong posiƟon as depicted in Fig. 8b, a rearrangement of the
electrons is necessary and even more events are triggered. Compared to the other tracked events,
the total number of events from these two types will always be much higher. AddiƟonally to this
event informaƟon, locale informaƟon about the country and language is available for the students
as well. We observed that the most popular origin of the students was the US, and the most popular
language was English accordingly. This is a surprising insight about the students itself because the
lab was not promoted in the US. We currently assume that a large number of bots, for example from
search engines, visited the lab frequently. With this data at hand, the learning rouƟne for a model
predicƟng at-risk students was started.

To learn a model, the students were observed for 7 days and the churn window had a Ɵmespan
of 28 days. With these parameters, we labeled 99 users as at-risk students, respecƟvely churners,
because they only used the lab within the first seven days and did not return in the following 28
days. On the other hand, 8 students were labeled as frequent users or students returning to the lab.
However, this raƟo was not surprising due to the fact that the lab was not in permanent use or part
of the curriculum in the last months.

AŌer themodel for the chemistry lab was learned, insights and quality esƟmates were accessible.
As a quality measure, the f1-score was used, as the dataset is not well balanced (cf. Sec. 4.4). Looking
at the staƟsƟcs above, only 7.5%of the students return to the lab a second Ɵme. Themodel achieves
an f1-score of 0.96 which is a very good result, as we will later see in comparison to the second case
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(a) Correct electron posiƟons. (b) Rearrangement of electrons is necessary.

Figure 8: Electron selecƟon for water (H2O) in the chemistry lab.

study in Sec. 4.5.2. One of themost helpful insights from themodel is a list of themost important fea-
tures used for the predicƟon. Themachine learning algorithm determined the following five features
based on custom events as most important:

• remove.element

• task.finish

• remove.electron

• check.electrons

• start.lab

This list of features can support teachers for improvements of the lab design. For example, compared
to Fig. 7, where set.electrons was the most used event, this event does not appear in the list of
the most important events. This underlines the power of machine learning algorithms which are
capable of finding important events that do not solely rely on the highest frequency but instead
on the discriminaƟve power. Similarly, the event remove.element only represents 2% of the total
events but the algorithm idenƟfied it as an important event in the case of predicƟng at-risk students.
Such insights are easily accessible and can now be interpreted from a pedagogical point of view for
further measures to improve the lab. The results from this feasibility study show that the system is
capable of predicƟng at-risk students. The next case study will addiƟonally show that the ENVISAGE
plaƞorm can also handle millions of events and scales to Big Data seƫngs.

4.5.2 Blade & Soul

As pointed out in the state-of-the-art secƟon, all machine learning approaches require a dataset
that allows to build features. For the ENVISAGE project, we were lacking a dataset from the virtual
labs containing thousands of students with millions of events. Due to this problem, we looked for a
dataset which has a high similarity to educaƟonal apps but is larger in size than the dataset from the
chemistry lab. One great soluƟon to the problem was parƟcipaƟng in the game data mining com-
peƟƟon as part of IEEE’s CIG 2017. NCSOFT, one the world’s largest game studios for MMORPGs,
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provided a dataset with telemetric user data from their highly successful Blade & Soul (BnS). The
training dataset had about 175million events from 4,000 players. There were two test datasets con-
taining an addiƟonal 3,000 players each. While the players in the training data were observed over
40 days, the players in the test datasets had an observaƟon Ɵme of 56 days. While the chemistry lab
in Sec. 4.5.1 had only 21 different events, we were able to extract about 80 different event types and
75 event properƟes from the BnS data. Tbl. 2 summarizes the BnS data.

Dataset Time Period Weeks Number of Gamers
Training 2016/07/27 - 2016/09/21 6 4,000
Test Set 1 2016/07/27 - 2016/09/21 8 3,000
Test Set 2 2016/12/14 - 2017/02/08 8 3,000

Table 2: Blade & Soul trainings and test data.

In contrast to the virtual lab data, the first stepwas analyzing the data and transferring it to the EN-
VISAGE format. The data provided by NCSOFT differs substanƟally form the virtual lab data which is
directly tracked through the GTM tracking integraƟon. The BnS data also contains more event types
and properƟes which allowed us to build new kinds of features. For example, social interacƟons
within the game were given in the dataset. While recency and frequency maƩer a lot in predicƟng
at-risk students or churn in general, social interacƟons were a new kind of informaƟon which we did
not have in the virtual labs. We found it parƟcularly interesƟng to engineer social features because
this also connects to the social presence as described in [11], which is also used byMoodle for their
at-risk student predicƟon. Similar to the pedagogical perspecƟve in virtual labs, certain game char-
acterisƟcs have to be taken into account when designing features for games. For that reason, the
feature engineering process was done in an iteraƟve fashion. This includes discussions about fea-
tures and the game concept, and checking the importance of new features. Therefore, we tried to
mainly make use of algorithms that provide informaƟon about feature importance. Nevertheless,
we did not limit ourselves to such algorithms and also tested ANNs. One should note that many of
the newly built features are also well suited for educaƟonal seƫngs. Similar to the chemistry lab,
the features described in Sec. 4.2.1 were also used for the churn predicƟon of the BnS players.

The CIG challenge was a great testbed to validate if the churn predicƟon or at-risk student pre-
dicƟon can be used on large datasets and to show that the algorithms are capable of producing
meaningful output in an addiƟonal seƫng. In the end, the GIO plaƞorm was ranked among the top
five results in the compeƟƟon with 13 results submiƩed in total. As an addiƟonal outcome, the par-
Ɵcipants were asked to contribute to a joint paper about the results and used methods within the
CIG challenge. This paper is currently under submission and we refer to [19] for more details. GIO,
represenƟng the ENVISAGE consorƟum, parƟcipated in this publicaƟon and described its work on
churn predicƟon.

The results provided further insights that will help to improve future work on the at-risk student
predicƟon. One observaƟon was that the algorithm did not heavily weight features based on the
social network within BnS. Regarding the social presence, one could assume that social features
should have a stronger impact and are very important from the pedagogical point of view. The social
graph that was created for BnS had about 32,000 players. However, we only had informaƟon about
connecƟons within the network for 4,000 players. This data leads to an incomplete and very sparse
graph which is rather uncommon. For further work on social features, a complete social network
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Figure 9: Feature importance for churner in Blade & Soul.

would be necessary. We can transfer this observaƟon to the educaƟonal seƫng as an important
insight. If one wants to take collaboraƟon among students into account, the complete social network
needs to be tracked within the virtual lab.

AŌer learning a model based on the data described above, one can again analyze the importance
of different features. Fig. 9 gives the relaƟve importance of the features used in the BnS case study
grouped by different types. Here, “Frequency” represents features that count events. “Recency”-
features measure the Ɵme since a parƟcular event has occurred or the Ɵme between two events.
“Amount” groups features which depend on values aƩached to events. For example, the amount of
virtual money spent. Lastly, features in the “Tendency” group indicate an increasing or decreasing
level of engagement based on curve fiƫng. As described above, the BnS dataset provides a rich set
of events which allowed us to create a large amount of features. Many of these features can also be
used by the predicƟon of at-risk students. For example, the social features that represent interacƟons
with other players or the frequency-domain feature that represents regular recurring usage.

While the f1-score in the chemistry lab case study was very high (0.96), we were only able to
reach an f1-score of 0.58 in the BnS case study. However, one should also not that the winner of the
CIG data mining compeƟƟon reached an f1-score of 0.62. This highlights that the problem is quite
difficult and huge improvements in the f1-score cannot be achieved easily but instead require a lot
of effort on feature engineering and algorithmic design.

Besides the differences in the two datasets, i.e., chemistry lab and BnS, we were able to use a
large intersecƟon of features for both case studies and run the data through the same pipeline as
depicted in Fig. 5. By doing so, we were able to validate the performance and capabiliƟes of the
infrastructure, resulƟng in predicƟons for the chemistry lab and the BnS dataset. On the one hand,
we could show that we are able to learn an at-risk student model and on the other hand, we are
able to solve a very similar task at a much larger scale. This underlines not only that the pipeline
for predicƟng at-risk students is fully funcƟonal but it also shows with respect to the results of the
CIG challenge that the work of the ENVISAGE project is highly compeƟƟve. The work on research
and development in the past months shows to be compaƟble with other research domains and is
applicable in interdisciplinary seƫngs. As described at the beginning of the secƟon on supervised
learning, the two case studies also highlight the similariƟes between educaƟonal data from virtual
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Figure 10: Event distribuƟon of the Wind Energy Lab dataset.

labs and behavioral data from games.

4.5.3 3D Wind Energy Lab

During the pilot execuƟon at EA in January 2018, 78 students used the 3D version of theWind Energy
Lab. The infrastructure was able to track 16,277 events in total over on three days. This included 21
unique event types. AddiƟonally, 918,409 events with game.state informaƟon were tracked. For a
beƩer understanding of the dataset, Fig. 10 gives an overview about the event distribuƟon. Similar
to Fig. 7 in Sec. 4.5.1, Fig. 10 shows the relaƟve usage of each event. In the 3D Wind Energy Lab,
the event enable.turbine is used most frequently with roughly 23%. Similar to the observaƟons in
the chemistry lab, this indicates that the lab concentrates on a parƟcular aspect and triggering the
associated event is central to the usage of the enƟre lab.

The applicaƟon of deep analyƟcs at the 3D Wind Energy Lab20 comes in the form of supervised
learning and in parƟcular, ANNs. ANNs are chosen because of theirwide adopƟon inmodernmachine
learning applicaƟons, their supreme performance in supervised learning tasks and their capacity to
approximate any given funcƟon with high accuracy (a qualitaƟve feature widely known as universal
approximaƟon).

Given the different nature and increased complexity of the 3D version of the Wind Energy Lab
and the overall aim of educators (D1.1 [32]) to predict the travel path (or learn ability performance)
of learners, we devised the following supervised learning approach. The ANN we employ considers
the following input vector:

• The game level where the learning exercise takes place, split by map/area (e.g., mountains)
and map pointer (sub-area within the map). Each of these variables (map/area and subarea)

20http://160.40.51.48/games/energy
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Figure 11: An example histogram of scores at the 3D Wind Energy Lab.

are idenƟfied by an integer ID which is transformed for the input vector as one-hot encoding.
The subvector of inputs for the game level is thus, for example: 0,0,0,1,0,0,0,0,0,0,0,1,0,0 (the
first five digits are for themap, which has an ID of 2, and the last 9 digits are for themap pointer,
which has an ID of 3).

• The power, cost, and area coverage of the chosen turbine to be used in this game level and for
the purposes of this exercise. These 3 values are normalized between 0 and 1, via min-max
normalizaƟon considering all currently authored turbine values in the 3D Wind Energy Lab.
The subvector of inputs for the chosen turbine is thus, for example: 0.417, 0.974, 0.75.

Based on the above input the ANN outputs (aƩempts to predict) the 4 PISA categories of student
performance based on the score metric as described in D2.4 [12]. As a reminder, the score repre-
sents a mastery index metric, which is ad-hoc designed by expert educators and designers of the
Wind Energy Lab. The score metric is based on a combinaƟon of features on the simulaƟon itself and
a mulƟple-choice answer post-simulaƟon. The student’s score may vary between 1 (lowest possible
performance) and 10 (highest possible performance). Fig. 11 illustrates an example of a score dis-
tribuƟon (illustrated as a histogram of scores) at the 3D Wind Energy Lab. The 4 PISA categories are
derived as follows and define the 4 outputs the ANN predicts:

• III: ReflecƟve/communicaƟve — Score: 8, 9 and 10

• II: Advanced — Score: 5, 6, 7

• I: Beginner — Score: 2, 3, 4

• <I: No problem solver — Score: 0, 1

The ANN may use a varying number of architectures depending on the data size available. The
most promising results have been achieved with architectures of one (or none) hidden layer consist-
ing of few neurons (see Fig. 12). All neurons of the ANNs in the final demonstrator of ENVISAGE em-
ploy a logisƟc funcƟon. The ANNs are trained on the dataset available (as described earlier) through
standard backpropagaƟon.
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Figure 12: TheANNapproach adopted for predicƟng the level of the learner’s competence (PISA score
distribuƟon) at the 3DWind Energy Lab. The ANNmaps in-game features to the score distribuƟon (4
score classes according to the PISA 2012 classificaƟon).

The cluster membership distribuƟon as it is obtained from the ANN (<I to III) distribuƟon is re-
ported back through the analyƟcs service to the visualizaƟon front-end. An educator that completes
a new virtual lab using the 3D authoring tool is presented with this visual analyƟcs informaƟon at
the end of her design. The pie chart shown below in Fig 13 displays the predicted PISA classificaƟon
distribuƟon (ANN output) given the choices the teacher made during the authoring process (ANN
input).

The implementaƟons used to experimentally realize the supervisedmodels described in this doc-
ument can be found at the following URL:

https://github.com/Envisage-H2020/Analytics-Server
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Figure 13: Similarly to the 2D Wind Energy Lab deep analyƟcs soluƟon, the four PISA clusters (four
ANN outputs) are depicted as a pie chart in the visual analyƟcs front end of the 3D Wind Energy Lab
of the authoring tool. For more details about the visual analyƟcs service please refer to D2.4 [12].
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5 AdaptaƟon of Learning Material

The previous secƟon described how supervised learning can be used to idenƟfy at-risk students.
However, idenƟfying such students is one thing. Recovering these students and keeping them en-
gaged is far more difficult. Students leaving a virtual labmay have various reasons. One reasonmight
be that either too liƩle or too much is demanded from the students. In this case, we can try to adapt
the content in such a way that it beƩer fits the needs of the students.

5.1 State-of-the-Art

When looking at state-of-the-art approaches, we differenƟate here again between academic ap-
proaches and companies applying similar ideas in the industry. Research has been invesƟgaƟng the
adaptaƟon of learningmaterial or personalized content in general a lot earlier before companies have
started to integrate such approaches into their products. As in the previous examples and within the
enƟre ENVISAGE project, it makes sense to first have a look at the development in games and then
compare it to the state-of-the-art in educaƟon.

5.1.1 Academic Research

Although there exist different angles for content adaptaƟon in games, oneof the commonapproaches
is to adapt the difficulty in games. The seminal work by Hunicke and Chapman from 2004 [17] de-
scribes the Hamlet system for adjusƟng the difficulty dynamically in Valve’s Half Life. Hamlet ana-
lyzes player behavior and adjusts the games accordingly to control the game difficulty. There are
also more recent papers such as the work by Xue et al. from 2017 [36]. Xue et al. try to opƟmize a
player’s engagement throughout the enƟre game by using probabilisƟc graphs in level-based games
by Electronic Arts. While the work summarized so far, focuses on adjusƟng games in general, there is
also work on adjusƟng opponents in games. For example, Olana Missura’s dissertaƟon [26] presents
an universal framework for games where players have interacƟons with opponents. Here, the skill
level of an opponent can be adapted to match a player’s skill.

When it comes to EDM, different techniques have been employed to personalize learning. For
example, collaboraƟve filtering [8] has been used to to suggest learning material. Other approaches
go even one step further and try to design enƟre courses or study plans in a data-driven way [1].

5.1.2 Industrial Approaches

In gaming, companies such as deltaDNA offer consulƟng on game balancing21. In many cases, this
is more oriented towards moneƟzaƟon than players’ performance or even skill improvement. For
example, a game developer may not be interested in causing a player to solve all levels as quickly as
possible because this player will then quickly move on to a new game — possibly from a different
developer or game studio.

When looking at the educaƟonal sector, this topic is oŌen referred to as AdapƟve Learning and
different aspects are covered by this term. While changing the content is also considered to be
adapƟve learning, the implementaƟon of different learning theories are also included. For example,

21hƩps://deltadna.com/consultancy/
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changing the repeƟƟve behavior of a flash card system. Companies such as WiseLab offer systems
that allow to create content based on quesƟons and answers. This learning material is then rolled
out to the learners in different forms (e.g., mulƟple choice quesƟons) and on different plaƞorms
(smartphone, tablet, etc.). In order to opƟmize the learning progress, the order of the quesƟons are
adapted. D2L22, formerly Desire2Learn, is an example of a company where the content for students
can be adapted. They provide an LMSwhich offers rule-based content adaptaƟon. One of their intro-
ductory videos23 describes well how triggers can be set to personalize the learning experience. For
example, when the system detects that students struggle to complete a test, supporƟng content can
be provided only to those students. Other LMSs’ like SABA24, and Know-How!25 also offer support
to define learning pathways based on thresholds. Another example is Teach to One by New Class-
rooms26 which promises personalized learning for math. Teach to One partners with schools directly
and does not only focus on digital learning material but also replaces the core curriculum of a class
by creaƟng individual content for each student.

Other companies go beyond rule-based systems and employ machine learning for educaƟonal
scenarios. For example, TrueShelf27 offers an adapƟve learning plaƞorm that lets students learn
mathemaƟcal concepts by helping them to solve math problems and real-world puzzles that get pro-
gressively harder as their skills develop. Their AI-powered plaƞorm idenƟfies students’ strengths and
weaknesses, and personalizes content accordingly. Adaptemy28 is another example of a company us-
ing an algorithmic approach to personalize the learning experience. Adaptemy’s plaƞorm does not
only provide a recommendaƟon engine that takes the type of content into account but also tries to
support learners by esƟmaƟng their proficiency level and personalizing content accordingly.

5.2 Dynamic Difficulty Adjustment

As we have discussed already, students have different behaviors and show varying performance on
learnings tasks. Therefore, we should also adapt the learning material to their needs. We should
avoid to demand too much from a student but we should also pay aƩenƟon to the learner not being
bored. In general, we should beginwith finding the best approach to teach content to an enƟre group
or class. AŌerwards, we can try to find a good pace for smaller subgroups of students, e.g. the high
performing students. UlƟmately, we are looking for a system that adapts the content for each student
individually. Before we can adapt the content, we need to assess the performance of a student on
the learning task, exercise, or challenge. At the same Ɵme, we also need to know the difficulty of a
given task, in order to adapt the course material accordingly. We describe different approaches in
the next secƟon.
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Figure 14: MulƟple choice quesƟon in the 3D Wind Energy Lab as part of the grading.

5.2.1 Assessing Performance and Measuring Difficulty

Assessing the performance of a student is not always obvious and can be done in different ways.
Deliverable D1.1 [32] already described how Ɵme-on-task is an important indicator in learning an-
alyƟcs. It was also discussed that Ɵme-on-task can be related to a student’s learning performance
or achievements. We have seen this connecƟon in Sec. 3 too when we clustered students using
archetypal analysis. In some cases, Ɵme-on-task can measure the difficulty of an exercise as well.
For example, if students typically do not require much Ɵme for a task, one can consider it to be
easier. However, this indicator does not always measure the difficulty as students may also give the
wrong answer aŌer only liƩle Ɵme because they did not give the exercise enough thought. If we have
exercises where we ask students for an answer, we would rather judge the difficulty of an exercise
by the total number of correct answers for each exercise, or the average grade of that exercise. For
example in the 3D Wind Energy Lab, students have to answers quesƟons which are part of a scoring
(see Fig. 14 for an example). The results are used to esƟmate the student’s PISA proficiency level.

If we cannot easily judge the quality of an answer or the learning task, we can also consider to
explicitly ask the students to rate the previous task. This could be a seƫng where we would need
a teacher to rate every answer aŌerwards. For example would be, when a soluƟon requires a free
text. Here, it is not possible to immediately assess the quality of a soluƟon. In larger seƫngs like

22https://www.d2l.com
23https://www.d2l.com/resources/videos/personalize-learning-experience-release-conditions-

intelligent-agents/
24https://www.saba.com
25https://en.knowhow.de/
26https://www.newclassrooms.org
27https://trueshelf.com/
28https://www.adaptemy.com
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Figure 15: Infrastructure for content adaptaƟon and dynamic difficulty adjustment.

MOOCs, it may even be completely impossible to rate each answer in an acceptable Ɵme frame.
AŌer the compleƟon of an exercise, we can ask the students to rate the previous exercise as “easy”,
“medium”, or “difficult”. Of course, other raƟng schemes are also possible. Fig. 15 shows the enƟre
process how the ENVISAGE project realizes content adaptaƟon within the GIO infrastructure. The
figure also highlights how the learner’s feedback is acquired and processed (Fig. 15 (1)).

Having either a grade or explicit feedback from the learner, we can correlate this feedback with
metrics such as Ɵme-on-task to esƟmate the perceived level of difficulty for students based on tele-
metric behavior. In some cases, the difficulty does not correlate with a single behavior but instead
several features have to be taken into account. Having feedback and behavioral data at hand, we can
use this data to build a machine learning model that takes as input the tracked data and the grading
or perceived difficulty of a student as labels (Fig. 15 (2)). Based on the behavioral data, the learned
model predicts how difficult a new task is for a student or predicts the esƟmated performance of a
student on a new task in advance. The case study on the 3D Wind Energy Lab in Sec. 4.5.3 also gave
an example how a machine learning model can be trained to predict students’ performance. This
approach has several advantages:

• By doing so, we can learn general behavior that correlates with more or less difficult tasks and
exercises.

• We can add new tasks and exercises in the future, and use our model to get an idea of the
difficulty of each new one.

• We get rid of the requirement to ask the learner for explicit feedback. These request for feed-
back may annoy the learner and cost Ɵme.

Depending on the amount of users, we do not even have to ask each learner to rate each tasks.
Instead, we can generalize from a smaller number of students and we do not have to bother each
learner. Again, this is in parƟcular interesƟng when looking at MOOCs with thousands of learners.
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5.2.2 Designing Learning Strategies

AŌer measuring the difficulty of an exercise and building a model to judge different exercises auto-
maƟcally, the third step is to design different learning strategies (Fig. 15 (4)). Here, a learning strategy
can have a variety of different forms. For example, in the case of theWind Energy Lab, a strategymay
be an iniƟal seƫng of the environment. Certain parameter configuraƟons make the problem easier
for the students because they have to do fewer changes in order to generate the proper amount of
energy or income. In the chemistry labs, the strategiesmay look different. For example, theMolecule
ConstrucƟon Lab29 asks students to buildmolecules. In its original form, the student picks amolecule
from a given list, solves the current task, and proceeds with the next molecule. One can also think of
a version of this lab where the students cannot pick the molecules themselves but instead the order
is given by the lab, i.e., by the teacher. Here, different strategies can order the molecules differently.
For example, from easy to hard, or vice versa. We have implemented this version as a use case in
Sec. 5.3.1.

5.2.3 Automated Strategy Design: GeneƟc Algorithms

The examples of the previous secƟon require expert knowledge from the teacher to define different
strategies. In some cases, the space of all possible strategies is way too large, to manually define and
test all strategies. In such seƫngs, machine learning algorithms can be used to define new strategies
automaƟcally. In parƟcular, we have started to look into GeneƟc Algorithms to create new strategies.

GeneƟc algorithms allow to automaƟcally construct new strategies based on exisƟng ones. In-
spired by the process of natural selecƟon, geneƟc algorithms find soluƟons to search problems in
an iteraƟve fashion. Typically, geneƟc algorithms start by generaƟng a few random soluƟons. In the
current seƫng, we prefer to have an educator generaƟng iniƟal seed soluƟons because the educa-
tor typically has a good intuiƟon how a “good” strategy may look like. In each iteraƟon, the geneƟc
algorithms pick a few exisƟng strategies from the pool of all available soluƟons to construct a new
generaƟon. Strategies that already perform well, are more likely to be selected to construct the next
generaƟon. The performance of a strategy is evaluated based on a fitness-funcƟon. In our seƫng, the
fitness-funcƟon can be the average performance achieved by the students who learned according to
a strategy. The construcƟon of a new generaƟon is based on simple permutaƟons and modificaƟons
of the current generaƟon. AŌerwards, the new generaƟon is then evaluated again based on the
fitness-funcƟon. This process conƟnues unƟl a quality threshold or a maximum number of iteraƟons
has been reached.

However, in the case of educaƟonal seƫngs, this approach comeswith addiƟonal constraints and
challenges. Here, we have to be very careful with randommodificaƟons. The ethical requirements do
not allow us to test strategies completely at random because students may suffer from bad random
strategies. For example, think of a strategy that chooses all parameters to be a the most difficult
seƫng. To a geneƟc algorithm this may look like a total valid strategy but a teacher would never
pick it manually. Although the results would quickly indicate that this strategy is not desirable, our
ethical obligaƟons do not allow us to test such a strategy. Furthermore, the fitness-funcƟon cannot
be evaluated easily in this seƫng, as we first have to find students to evaluate the new generaƟon

29http://www.envisage-h2020.eu/games/chemistry/lab_molecule_ionic_covelant_bonding/
Molecule_IonicCovelantBonding.html
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on. AddiƟonally, we have to make sure that the difference in quality is significant and not just a
probabilisƟc arƟfact. For the laƩer issue, we describe appropriate tests in the next secƟon.

While geneƟc algorithms can easily generate hundreds or thousands of strategies, we also need a
sufficient amount of students to validate the quality of each strategy. For that reason, school seƫngs
may be less adequate for this approach but MOOCs show a lot potenƟal for this automated process.
The next secƟon will describe in detail how strategies can be compared and tested.

5.2.4 A/B and MulƟvariate TesƟng for Learning Strategies

If we have mulƟple strategies at hand, we want to compare those strategies. As we have described
above, the performance of a single strategy is typically the average score over a group of students.
For that reason, we have to assert that the difference in performance of two strategies is staƟsƟcally
significant and not only due to some extreme outliers. E.g., a few students achieving extremely good
results by cheaƟng. If we have two strategies at hand, we can compare them via A/B-TesƟng [20].
Here, it does not maƩer how a strategy was constructed by geneƟc algorithms or manually by a
human. A/B-tesƟng allows us to pick the more promising alternaƟve of two strategies.

Running an A/B tesƟng experiment on two strategies amounts to a staƟsƟcal significance test.
Typically, we assume a significance level of 95%. This means that one can be 95% confident that the
winning strategy is really superior. Nevertheless, there is sƟll a 5% chance that the result is only due
to a random chance.

Depending on the nature of our experiment, different tests needs to be used. For example, when
the performance is measured by the number of students that pass a test, we have a binomial dis-
tribuƟon and should be using a Chi-square test. In other cases, where the performance indicator
is normally distributed, a t-test is what we are looking for. The performance data may be normally
distributed in the case of Ɵmings for a parƟcular task. However, in a proper seƫng, we first need
to validate the distribuƟon of the data. In other cases, for example when we count the number of
correct answers, the data is strictly speaking not normally distributed butmay be Poisson distributed.
Nevertheless, it is also known that the normal distribuƟon is a limit of the Poisson distribuƟon for
large mean values. SƟll, other tests such as the Wilcoxon-Mann-Whitney test are more suitable in
such cases.

We oŌen havemore than two strategies that we want to compare. Themost obvious thing to do,
is performing pairwise tests. However, this approach will increase the likelihood of false posiƟves. As
described above, there is always a 5% chance of the winning strategy being inferior when assuming
a significance level of 95%. Now, doing several pairwise tests increases this chance. For that reason,
there exist other approaches to compare mulƟple outcomes such as Analysis of Variance (ANOVA)
F-tests.

In general, A/B tesƟng comes with some addiƟonal disadvantages. For example, we need to
specify the number of students in advance who will have to learn following the different strategies.
This may have the undesirable effect that the inferior strategy is used on many students who suffer
from lower quality teaching. For that reason, wewill explainMulƟ-Armed Bandits in the next secƟon,
which avoid this disadvantage.

Page 40



5.2.5 MulƟ-Armed Bandits for OpƟmizaƟon

Instead of using pairwise tests or othermulƟvariate tesƟng frameworks,MulƟ-Armed Bandits (MABs)
also allow us to compare several strategies at the same Ɵme and also provide a mechanism to iter-
aƟvely pick the best performing strategy among all available ones. MABs are inspired by gamble
machines in casinos, i.e., the arms of the bandits. This seƫng assumes that there are mulƟple slot
machines in a row with random rewards. The player has to decide, which machine to play in order
to maximize the reward.

We can now view each learning strategy as a “one-armed bandit” and the reward is the per-
formance of a student. We want to find the strategy that maximizes the performance for as many
students as possible. If the reward of each strategy was known, the task was trivial. Without this
knowledge, we have to try different strategies and track the rewards. A very simple approach would
be to choose the strategy with the current best expected reward. However, this yields in the “ex-
ploitaƟon vs exploraƟon” dilemma. Some strategies that we have not tested yet, may yield even
beƩer results, or some strategies may just look bad aŌer just a few iniƟal tries due to random ef-
fects.

The goal of a bandit algorithm is now to find an approach that plays the opƟmal strategy exponen-
Ɵally more oŌen than any other strategy. One instance of an algorithm that solves the mulƟ-armed
bandit problem, is the Upper Confidence Bound (UCB) algorithm [3]. We will not give full technical
details here, however, the algorithm calculates a score for each strategy that trades off exploitaƟon
and exploraƟon in each iteraƟon. Depending on this score, the next strategy is picked. Another
popular alternaƟve to UCB is Thompson sampling [7]. Thompson sampling achieves state-of-the-art
results while being vary easy to implement.

In our seƫng, we do not calculate the score for each student, i.e., in every single iteraƟon, but
change the distribuƟon over all strategies frequently. I.e., we begin with a distribuƟon where all
strategies are distributed uniformly and then adapt this distribuƟon as we gain more insights on
which strategies perform well. By constantly changing the distribuƟon, we avoid the problem from
A/B tesƟng where we have to determine a fixed number of trials per strategy in advance. Therefore,
there will be a lot fewer students that receive a subopƟmal strategy in many cases.

5.2.6 PersonalizaƟon of Strategies

The MAB approach to find an opƟmal strategy has one disadvantage when talking about personal-
izaƟon of learning material and virtual labs: it tries to find an opƟmal strategy across all students,
i.e., it does not find strategies for different groups of students. However, it is very likely that not all
strategies are equally well suited for all students. For example, some students may require a slower
pace at the beginning than others.

For that reason, one future extension of this approach is to segment students into different groups
and to find opƟmal strategies for the different groups. One grouping of the students could follow the
PISA levels of proficiency. This approach has also been propose in D1.4 [24], Sec. 2.1.3.

Another approach could use the unsupervised methods presented in D3.1 [16], Sec 5.1, where
students were automaƟcally clustered into groups based on their behavior. Other approaches could
first use a predicƟon of at-risk behavior and group the students depending on their at-risk likelihood.
However, here one has to be careful. The classifier could also detect well performing students as
potenƟal churners, as they have already learned successfully and are in danger of leaving as the
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demand is too liƩle for them. For that reason, one has to carefully craŌ the adaptaƟon of the content.
Eventually the vision is to have segments of size n = 1, i.e., every student gets an individual

learning strategy. Taking this even one step further, we can use Reinforcement Learning to learn a
model of an agent represenƟng a teacher that dynamically adapts the content for each student on a
finer level.

5.2.7 Closing the Loop: Reinforcement Learning

Before describing how Reinforcement Learning can be used to learn a model of a teacher, let us
denote that the mulƟ-armed bandit problem can be seen as one of the most simple reinforcement
learning problems or a precursor of reinforcement learning. AŌer each pull of an arm, the reinforce-
ment learning algorithm tries to find the opƟmal next acƟon that maximizes the rewards. I.e., pulling
the same arm again or a different one. In the context of reinforcement learning, one refers to a pol-
icy. By using a method called policy gradients, a policy for picking acƟons is learned. Currently, it is
very popular to use ANNs and Deep Learning within the policy gradients approach.

An interesƟng possibility of reinforcement learning is to learn amodel, or an agent, that simulates
a teacher. Previously, we defined enƟre strategies for a virtual lab in advance. For example, in the
case of the chemistry lab, we defined all acƟons in advance. E.g., in one strategy molecule A would
always follow molecule B and in another strategy this would possibly happen vice versa. However,
personalizing the enƟre learning experience would not define the next molecule in advance. Instead,
the student would solve one challenge and the teacher would then pick the next one matching the
current level of proficiency of the student. I.e., an acƟon is the change in course or leaning material,
or adjustments to the environment of a virtual lab. For the chemistry lab, this would amount to learn-
ing a policy that picks the next molecule based on the previous molecules and the behavior of the
student. Here, the reward is the behavior or performance of the student. In deliverable D1.3 [33],
the ideas and advantages of acƟve learning are further moƟvated, in parƟcular from a pedagogical
point of view. Reinforcement learning can be used as a technology to improve and advance the ap-
proaches to acƟve learning. Lastly, one should note that this seƫng disƟnguishes from supervised
learning as described above, as we do not know in advance how the next challenge affects the learn-
ing behavior of the student. Instead, the student has to solve upcoming challenges and based on the
performance, we learn if this was a good design of learning and course material.

This approach has not been implemented yet and is leŌ for futurework. The approach also comes
with several challenges. We need a large set of students and evaluaƟons so that we can learn a reli-
able model. The feedback from the students does not necessarily come immediately. For example,
we may design a virtual lab with several sub-tasks. However, the students’ performance is only eval-
uated once at the end of the lab. Such a seƫng, for example, is present in the 3D Wind Energy
Lab. AddiƟonally, this approach demands much higher computaƟonal power from the infrastruc-
ture. Whenever the student is evaluated, the model needs to make the next training iteraƟon and
has to update its model. Similar to the MAB approach, one can also collect evaluaƟons in batches,
which however then only approximates the opƟmal training procedure.
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Figure 16: The original chemistry lab containing the default dropdown.

5.3 Case Studies

We will now present two different case studies that exemplify the usage of dynamic content adap-
taƟon. We will begin by presenƟng the integraƟon of content adaptaƟon in a chemistry lab. This is
followed by a case study produced in cooperaƟon with one of GIO’s customers who operates a highly
successful mobile quiz game.

5.3.1 Chemistry Lab

One use case for difficulty adjustment or content adaptaƟon is the Organic Molecule Covalent Bond-
ing virtual lab. As shown in Fig. 16, in its current form, the student can pick a molecule from a
dropdown. AŌer this selecƟon, the student has to answer different quesƟons with respect to this
molecule and solve associated tasks. AŌer all tasks have been solved, the student can pick the next
molecule. More informaƟon about the 2D Chemistry Labs can be found in deliverable D1.1 [32],
Sec. 6 and the lab is sƟll available online30.

We have now modified the lab in such a way that the order in which to solve molecules is deter-
mined by the teacher31. The source code also be found in ENVISAGE’s GitHub-repository32. Each of

30http://www.envisage-h2020.eu/games/chemistry/lab_molecule_ionic_covelant_bonding/
Molecule_IonicCovelantBonding.html

31https://envisage.goedle.io/dda/examples/chemlab/Molecule_IonicCovelantBonding.html
32https://github.com/Envisage-H2020/lab_molecule_ionic_covelant_bonding/tree/gio/content_
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Figure 17: The new chemistry lab where a molecule is picked based on a strategy obtained from the
ENVISAGE API.

such orderings is what we considered a learning strategy in the descripƟon of the approach in the
text above. The teacher now defines different strategies in the authoring tool and once a student
starts the lab, a random strategy is assigned by querying the ENVISAGE API. By doing so, teachers
can test if students stay longer engaged if easy molecules are followed by difficult ones. Or, if a good
ordering should containmore or fewer difficult molecules because an orderingmay contain the same
molecules more than once. Accordingly, the adapted chemistry lab looks as depicted in Fig. 17.

This implementaƟon has only been made available shortly before the submission of the deliver-
able. For that reason, we do not have enough data available to measure the impact of a possible
adaptaƟon and we cannot say yet which strategy works best. However, we are aiming at integrat-
ing this content adaptaƟon into the next pilot study, in order to obtain more behavioral data from
students and feedback from teachers. While the dynamic content adaptaƟon is currently only inte-
grated in the 2D version of the lab, we are also working on integraƟng the same mechanism into the
3D version of the chemistry lab, as well as the Wind Energy Lab.

Right now, the student will always receive a new strategy when the virtual lab is loaded. How-
ever, in the future one could also consider storing the current strategy as long as not all molecules
of a strategy have been solved. In that case, we would also require a skip buƩon, so that too diffi-
cult molecules can be skipped and students do not leave due to insurmountable obstacles. Tracking
the usage of the skip buƩon would also be an interesƟng behavioral datapoint. Its analysis could

adaptation/
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Figure 18: CorrelaƟon between Ɵme to solve a level and the player feedback regarding the difficulty.

addiƟonally support the design of new strategies. If we proceed with this approach, we can also
implement more sophisƟcated approaches to assign a follow-up strategy. E.g., if students perform
well, they will receive a more difficult strategy aŌerwards.

AŌer a sufficient number of students have used the different strategies, we can start to evaluate
the different strategies based on various performance indicators. For example, which strategy lead
tomore correctly solvedmolecules? Which strategy had students engaged for the longest amount of
Ɵme? Similar to the case study for at-risk student predicƟon, the implementaƟon for the chemistry
lab is at a prototype stage and there was only limited data available as of February 2018. There-
fore, we now provide another case study in the gaming sector where the same system was used to
dynamically adapt the difficulty of a mobile quiz app.

5.3.2 Mobile quiz Game

One of GIO’s customers runs a successfulmobile quiz game. This game is divided in hundreds of levels
andwith the approach described in Sec. 5.2, we helped the quiz game to find an improved ordering of
their content. Opposed to educaƟonal apps, their KPIs may be different but the technical approach
remains very similar. The results presented here, were first published on GIO’s blog in November
201733.

From the surface it was not obvious which levels in the quiz game were more or less difficult, as
players could skip levels by using jokers. Therefore, we needed to measure the perceived level of
difficulty by the players, before we could analyze the relaƟonship between the customer’s KPIs and
level difficulty. For that purpose, GIO’s infrastructure supports the tracking of player feedback. AŌer
the compleƟon of a level, the app simply asked the player to score the previous level. In a simple
seƫng, one can just ask the player to rate the level as “easy”, “medium”, or “difficult”. This data is
then used to calculate a score for each level.

However, one does not want to ask every single player to rate every single challenge as this will

33http://blog.goedle.io/2017/11/29/increase-ad-revenue-by-74-with-difficulty-adjustment/
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Figure 19: An example strategy that increases and decreases the difficulty in a smooth manner to
diversify the user experience.

annoy the user and possibly lead to churn. For that reason, we analyzed the data in detail and found
out that the player feedback correlated very well with the Ɵme it took to solve a level. Such an
observaƟon is not rare and can be found in educaƟonal scenarios as well. For example, we have
seen in Sec. 3.2 as well that Ɵme-on-task is a good indicator of performance and learnability. Fig. 18
shows data frommore than 2,000 different levels. In total, 750,000 level compleƟons were taken into
account from roughly 60,000 players.

Once we have a funcƟon to esƟmate the difficulty for all levels which only depends on behavioral
user data, such as Ɵme-on-task, we can get a beƩer understanding of how the user journey looks like
in terms of the level difficulty. We can now test different strategies and measure their impact on the
KPIs or use MulƟ-Armed Bandits to find the best strategy directly. The result of each test also gives
new ideas on designing addiƟonal strategies. One example of a strategy could be the one depicted
in Fig. 19. The strategy in Fig. 19 was designed in such a way that the level difficulty increases with
every level for a certain number of levels before it then decreases again for the same number of
levels. Users who want to be challenged right away might find such a strategy more appealing than
the iniƟal one. We can test dozens, hundreds, or even thousands of such strategies depending on
the number of players available.

In (mobile) games, revenue is typically themost important KPI. By tesƟng various different strate-
gies, we were able to improve ad revenue for the mobile gamemenƟoned above by 50% aŌer 7 days
and 74% aŌer 14 days compared to the iniƟal baseline. One should menƟon that this was all possi-
ble by only operaƟng on the macro level and we have not started to group users into segments yet.
As we have seen, measuring and analyzing the difficulty level has several benefits and applicaƟons
within educaƟon sector and beyond. It helps to opƟmize the retenƟon or moneƟzaƟon in mobile
games but can also be used to opƟmize other KPIs depending on the nature of the app or students’
performance in virtual labs.
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6 Demo

We will now describe two demonstrators that include the predicƟon of at-risk students and the con-
tent adaptaƟon from the secƟons above. We will begin with the predicƟon of at-risk students and
then describe how the content adaptaƟon is managed from within the authoring tool. Most of the
funcƟonaliƟes shown below are accessible through the authoring tool at:

http://160.40.50.238/envisage/wpunity-main/

To login, a test account has been created with the username “author” and the password “review-
erenvisag”.

6.1 PredicƟon of At-Risk Students

To demonstrate the training of a model for the predicƟon of at-risk students, we have prepared a
web-service where raw tracking data can be uploaded. This data is then analyzed and preprocessed
to be used for the model learning. If the target app already uses the ENVISAGE infrastructure to
track behavioral data, the ENVISAGE API can be used to download raw data for specific days. We also
provide a helper script to directly download raw data for an enƟre Ɵme span and to merge mulƟple
days into a single file. This script can be obtained from ENVISAGE’s GitHub-repository34. The final
dataset has to be a JavaScript Object NotaƟon with Padding (JSONP) file. The JSONP file contains
one JavaScript Object NotaƟon (JSON) dicƟonary per line. The dicƟonaries require the following
mandatory fields to be used in the demonstrator:

app_key IdenƟfier of the virtual lab

user_id Unique idenƟfier of a learner

event Event which was triggered by the learner

ts Unix Ɵmestamp that indicates when the event was triggered

A more detailed descripƟon of the fields can be found in D2.1 [13], Sec. 4.1. D2.1 also contains a
descripƟon about the data types and which addiƟonal fields can be used. The following code snippet
represents a single dicƟonary of the JSONP file, i.e., a single line:

{
” u s e r _ i d ” : ” l e a r n e r _ 1 ” , ” t s ” : 1516095542 ,
” app_key ” : ” 1 ” , ” event ” : ” answer . que s t i on ”

}

6.1.1 Data Upload View

Once the data is in the correct format and has sufficient size, it can be uploaded to the ENVISAGE
backend to invoke the demonstrator. Currently, the demonstrator supports JSONP files which can be
opƟonally compressed via GNU zip. If the data is compressed, the file name should end with .gz.
The URL for the data upload is as follows:

34https://github.com/Envisage-H2020/Tools/blob/master/utility_scripts/merge_api_files.py
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Figure 20: Screenshot of the data upload for the predicƟon of at-risk students.

https://envisage.goedle.io/at-risk/upload.htm

Fig. 20 shows the upload screen. On pressing the submit buƩon, the data is first uploaded to GIO’s
servers. The data is then checked for the correct format and aŌerwards a new process for learning a
model for the predicƟon of at-risk students is started.

6.1.2 Intermediate View

AŌer the dataset has been uploaded, the user gets an experiment id and a link poinƟng to a result
page. This step is depicted in Fig. 21. In the background, the data has to pass the enƟre process
pipeline which was shown in Fig. 5. If users want to check results now, they can click the link. Other-
wise, they should save the experiment id for checking the results later. Depending on the size of the
dataset, results will be available sooner or later.

6.1.3 Results View

With the link from the intermediate page, one can access the result page. Due to the complex process
pipeline, the page might not be ready yet. If this happens, one will only receive limited informaƟon
and has to update the result page a few minutes later. This depends on the number of events and
students in the dataset. If one did not click the link aŌer the upload immediately but saved the
returned experiment id (exp_id), one can also obtain the results via the following URL:

https://envisage.goedle.io/at-risk/index.htm?exp_id=<exp_id>

Once the results are ready, one can obtain different descripƟve staƟsƟcs about the dataset, e.g., the
number of events and students, and informaƟon about the model for the at-risk student predicƟon,
e.g., quality of the learned model and important features. An example screenshot of the result page
is shown in Fig. 22. The results can also be accessed directly from the authoring tool. AŌer the login,
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Figure 21: Screenshot aŌer the data upload showing the experiment id which idenƟfies the model
being learned in the meanƟme.

one has to select an exisƟng project. Within the project, one has to select a scene and in the next
view, the at-risk student predicƟon appears in the menu. In summary, the results page contains the
following informaƟon:

Number of Unique Events The count of unique events in the dataset. This number corresponds to
the different types of events, e.g., add.bonding.

Number of Events This is the number of events which was uploaded from all users in the dataset.

Number of Students This is the count of students in the dataset.

Number of Churned Students The total number of students that were labeled as at-risk students in
the dataset.

Timespan The Ɵme interval from the first tracked data point to the last tracked data point in the
dataset.

Number of ObservaƟon Days The number of days a user is observed before making the at-risk pre-
dicƟon (cf. Sec. 6).

Churn Window The churn window used in the experiment (cf. Fig. 6).

Number of Sessions The total number of sessions in the dataset. Deliverable D2.1 [13] explained
how sessions are calculated.

F1-Score The f1-score obtained by the model in a 5-fold cross validaƟon (cf. Fig. 4.4 for details on
evaluaƟng machine learning algorithms).

Top Countries A list of up to five countries that were observed most oŌen in the dataset.

Top Languages A list of up to five languages that were observed most oŌen in the dataset.

Top Features Up to five features which have the greatest impact from a staƟsƟcal point of view that
lead to an at-risk behavior.
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Figure 22: Result page of the at-risk student predicƟon.
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6.1.4 Future Extensions

Right now, the insights into the at-risk behavior of students are somewhat limited and the model
cannot be used easily to predict behavior of new students. In the future, we plan to improve on both
of these issues.

Regarding the insights, we envision an algorithm that is capable of extracƟng addiƟonal and easy
to digest insights from the model. I.e., rules or examples why students are, or become, at-risk. This
should go beyond the single dimension that we present right now. For example, instead of just pro-
viding the informaƟon that a parƟcular event correlates with at-risk behavior, we want to present
combinaƟons of mulƟple events and their characterisƟcs. E.g., students with a high number of event
A but a low average of event value B tend to have an increased at-risk behavior. When using the
learned models for predicƟons, we also want to make sure that the quality of the model is suffi-
cient. To get a beƩer understanding of the model quality, tools such as ROC-curves [10] or confusion
matrices [34] can support teachers as well.

There are different opƟons to make the predicƟons of the model available. A straighƞorward
approach would be to allow the user, i.e., game developer or educator, to also upload an addiƟonal
dataset with the most recent students for which predicƟons are supposed to be made. These stu-
dents would not be used for training but instead those students would be evaluated by the algorithm.
The predicƟon for each student could be wriƩen to a result file. E.g., if one wants to use data from
the last two years for training but only needs predicƟons for the current class which is using the lab.
Another approach would be to automaƟcally detect which students in the dataset are new and do
not qualify as training instances yet. These students could be removed from the training dataset and
instead be used to make a predicƟons. Again, a result file could be provided with predicƟons on
those users.

Students at-risk in the next 2 weeks
ConƟnue Uncertain Stop
45% 25% 30%

Table 3: Traffic light system for at-risk students.

One of the main problems, when it comes to interpreƟng future behavior, is an easy to read rep-
resentaƟon of the predicƟons. Without further knowledge and a concrete use case, understanding
future behavior is oŌen hard to grasp. Therefore, a traffic light system could help the teachers to
directly see how the behavior is distributed among the students. We have already had great success
in the past with traffic light based visualizaƟons in markeƟng seƫngs. An exemplary visualizaƟon is
depicted in Tbl. 3. The next step for a teacher is to adjust a virtual lab based on insights gained from
the learned models. For example, if a feature like reading the manual or answering quesƟons leads
to a reduced at-risk propensity. This closes the loop and nicely connects to the content adaptaƟon
in the next secƟon.

6.2 Content AdaptaƟon

We will now describe the demonstrator of the content adaptaƟon module. Similar to the demon-
strator of the predicƟon of at-risk students, we will explain different screens that are used within the
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Figure 23: Authoring tool showing all available strategies for a virtual lab.

enƟre process. All screens can also be accessed directly from the authoring tool. AŌer the login, one
has to select an exisƟng project. Within the project, one has to select a scene and in the next view,
the dynamic content adaptaƟon appears in the menu under “DDA”.

6.2.1 List of Strategies

The first screenshot from the authoring tool in Fig. 23 shows a list of all available strategies. This view
shows all strategies with basic informaƟon, such as the current counter, i.e., the number of Ɵmes this
strategy has been allocated to students, a maximum value which defines the limit of tries for each
strategy, and a weight that defines the probability of this strategy being returned. In many cases, a
lab has a large variety of strategies and showing only the acƟve ones is helpful. For that reason, one
can remove the inacƟve ones from the view by clicking the checkbox next to “AcƟve”. Clicking this
checkbox leaves the user with only the currently acƟve strategies.

6.2.2 Add a Strategy

The view shown in Fig. 24 allows to add a new strategy to the set of available strategies. It only
requires a new name for the strategy and its descripƟon in valid JSON. Here, one has to be careful
to enter JSON that is compaƟble with the parƟcular virtual lab. In the case of the chemistry lab, an
example strategy could look as follows:
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Figure 24: Adding a new strategy for a virtual lab from within the authoring tool.
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Figure 25: Screen for tesƟng a strategy.

[
”H2O” , ” HCl ” , ”H2O” , ” KBr ”

]

This strategy begins withwater (H2O), conƟnueswith hydrogen chloride (HCl), repeats water again,
and finishes with potassium bromide (KBr). While entering JSON is quite technical and not every
teacher may be used to that notaƟon, it has the advantage that it gives a lot flexibility to the dynamic
content adaptaƟon. In the future, a developer of a virtual lab may provide a small tool that helps the
teachers to generate proper JSON. These tools could be integrated in the authoring tool as well for
each different type of virtual lab.

6.2.3 Test a Strategy

AŌer a new strategy has been added to a virtual lab, it needs to be acƟvated and tested. By seƫng
up a test, the strategy is acƟvated and an upper limit of tries is set. The screen in Fig. 25 shows
how a test for a strategy is started. For new strategies, an iniƟal number is set that determines how
many students will see the strategy. For already tested strategies, the number can be increased if the
maximum has been reached.
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6.2.4 Future Views

There is a number of views that are currently work in progress and will be released in the near future.
This includes but is not limited to:

Edit View This view allows to edit basic properƟes of a strategy such as the maximum number of
trials or the current weight. It is important to note that a change of the weight triggers an
update of the other strategies as well so that the probabiliƟes add up to 100%.

Auto RedistribuƟon The “Edit View” will allow to manually change the weights of the strategies.
However, it is oŌen more desirable to have the MABs re-adjust the weights automaƟcally ac-
cording to the performance.

DeacƟvate a Strategy Stops a current test and deacƟvates a strategy.

Performance View This view compares the performance of different strategies for a specific Ɵme-
frame, e.g., the last month.

We have now seen how the demonstrator currently supports different types of machine learning
algorithms. The outlook in the next secƟon describes in greater detail how these different models
and predicƟons can be combined in the future.
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7 Outlook and Conclusion

As we have described in the previous secƟons, mulƟple deep analyƟcs algorithms are operaƟonal
by now. We have already applied them to different virtual labs and the evaluaƟon of the results is
sƟll going on. Not every algorithm makes sense to be integrated into every virtual lab. For example,
the design of the Wind Energy Lab does not support the usage of the predicƟon of at-risk students.
Students may use the lab once to understand the physics of wind energy but are not necessarily
encouraged to use the lab mulƟple Ɵmes. On the other hand, the at-risk student predicƟons is tech-
nically ready to be used in the 3D versions of the chemistry labs but there is not always sufficient
data available yet to learn a model for each lab. For that reason, we are planning to finish the inte-
graƟon of the predicƟons into all labs, once enough data was gathered. We currently assume that
the next pilot phase will generated a batch of data at a reasonable scale to observe at-risk behavior
of students in the chemistry labs. Nevertheless, we have also shown with the help of game data that
the algorithms and the enƟre plaƞorm is capable of generaƟng posiƟve impact on a large scale and
in business relevant use cases.

We have not started yet to implement the reinforcement learning for content adaptaƟon in small
steps as presented in Sec. 5. Here, one acƟon in the algorithm amounts to adapƟng the content.
The reward of this acƟon is measured by students solving a task or exercise. The implementaƟon
of this approach in an educaƟonal seƫng requires a lot data and we should validate the simpler ap-
proaches based on A/B tesƟng or MulƟ-armed bandits first. Once we have saƟsfying results from
those approaches, we are at a good starƟng point to implement the more sophisƟcated reinforce-
ment learning approaches. Realizing the mulƟ-armed bandit problem with help of reinforcement
learning might be a good approach to transit to the more advanced seƫng.

One avenue for future work that we consider to be equally interesƟng and potenƟally easier to
realize in the remaining amount of Ɵme is the combinaƟon of the predicƟon of at-risk students and
the content adaptaƟon. As it has already been moƟvated, the two approaches can be connected
by first conƟnuously making an at-risk predicƟon for students and adapƟng the course material ac-
cordingly. For example, when the at-risk predicƟon indicates a high likelihood of a student failing
or dropping out of a course because it is too challenging, the plaƞorm should intervene. There are
different opƟons to support those students. For example, the content for these students should be
extended in such a way that it offers more supporƟng material that guides the students in solving
the problems. In contrast to this, if the system idenƟfies students that only spend liƩle Ɵme in the
virtual lab but easily solve all challenges, the content should be expanded in such a way that these
students are challenged as well.

There are some technical extension that we consider to be meaningful and important for the
infrastructure and plaƞorm. For example, a proper management of machine learning models for
different teachers and virtual labs is very important. With new data arriving, models need to be up-
dated and the algorithms need to decide which data to take into account. For example, we have
observed that the virtual labs change substanƟally over Ɵme. With educators revising labs, possibly
even based on the insights generated by the shallow and deep analyƟcs, the structure of the data
tracking changes. By doing so, previous datasets may be become obsolete and the algorithms should
primarily learn form the most recent data. Nevertheless, the old datasets can be used to bootstrap
the algorithms to learn more quickly. This enƟre process should be organized and implemented in
such a way that educators can be informed about the current quality of the data and the models.
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Teachers can even be guided to run certain experiments with the students to generate the next iter-
aƟon of datawithout harming the quality of teaching. Such approaches are oŌen referred to as acƟve
learning within machine learning. I.e., the algorithms request specific training examples to improve
the quality of the model. Similar to A/B tesƟng and geneƟc algorithm in Sec. 5, we also have to be
careful when the algorithms suggest changes. All changes need to be compliant with the teacher’s
point of view and human intuiƟon.

Let us briefly summarize the contribuƟons and findings in the deliverable at hand. Besides provid-
ing an up-to-date overview on the ArƟficial Intelligence in EducaƟon community, our contribuƟons
focused on the implementaƟon of deep analyƟcs and the evaluaƟon of the algorithms in six different
case studies. We have shown how to use unsupervised clustering to group students based on their
behavior in Sec. 3. We compared two different clustering algorithms, namely k-means and archety-
pal analysis. AŌer examining the results, we concluded that archetypal analysis is beƩer suited for
clustering of students in the 2D Wind Energy Lab. We conƟnued by using supervised learning algo-
rithms to predict at-risk students and the performance of students in Sec. 4. We added three case
studies to validate these approaches by not only using data from virtual labs but also a large scale
dataset from an MMORPG. In Sec. 5 it was described how content can be adapted dynamically in
virtual labs. We showed how to extend a chemistry lab to integrate a simple content adaptaƟon and
furthermoƟvated this approach by demonstraƟng that this approachwas previously used in amobile
quiz game with great success. As this deliverable is of type “Demonstrator”’, we showed in Sec. 6 in
detail how the deep analyƟcs is integrated into the ENVISAGE authoring tool and gave references to
the corresponding source code if applicable.

While we have presented several algorithms in this deliverable and its predecessors, AI in ed-
ucaƟon and deep analyƟcs for virtual labs is sƟll at a basic level. Although we can borrow many
technologies from the gaming industry and rely on algorithms that have been analyzed for decades,
the educaƟonal seƫng comes with its own challenges. For example, ethical obligaƟons of teaching
restrict the possible tests of learning strategies and require a more careful approach. AddiƟonally,
privacy regulaƟons are jusƟfiably more restricƟve when it comes to school educaƟon. Nevertheless,
the possible impact of AI in educaƟon is huge and the possibiliƟes of personalized and acƟve learning
outweigh the challenges.
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